Cho số thực \(a\) khác 0. Khi đó \(\mathop {\lim }\limits_{x \to 0} \frac{{{x^2}}}{{1 - \cos ax}}\) bằng
Giải chi tiết:
Ta có: \(\mathop {\lim }\limits_{x \to 0} \frac{{{x^2}}}{{1 - \cos ax}} = \mathop {\lim }\limits_{x \to 0} \frac{{{x^2}}}{{2{{\sin }^2}\frac{{ax}}{2}}} = \mathop {\lim }\limits_{x \to 0} \left[ {\frac{{{{\left( {\frac{{ax}}{2}} \right)}^2}}}{{{{\sin }^2}\frac{{ax}}{2}}}.\frac{2}{{{a^2}}}} \right] = \frac{2}{{{a^2}}}\mathop {\lim }\limits_{x \to 0} {\left( {\frac{{\frac{{ax}}{2}}}{{\sin \frac{{ax}}{2}}}} \right)^2} = \frac{2}{{{a^2}}}{.1^2} = \frac{2}{{{a^2}}}\).
Chọn A.