Cho \(\mathop {\lim }\limits_{x \to - \infty } \frac{{a\sqrt {{x^2} + 1} + 2019}}{{x + 2020}} = \frac{1}{2};\,\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + bx + 1} - x} \right) = 2\). Tính \(P = 4a + b\).
Giải chi tiết:
\(\begin{array}{l}\mathop {\lim }\limits_{x \to - \infty } \frac{{a\sqrt {{x^2} + 1} + 2019}}{{x + 2020}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - a\sqrt {1 + \frac{1}{{{x^2}}}} + \frac{{2019}}{x}}}{{1 + \frac{{2020}}{x}}} = - a = \frac{1}{2} \Leftrightarrow a = - \frac{1}{2}\,\\\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + bx + 1} - x} \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{\left( {\sqrt {{x^2} + bx + 1} - x} \right)\left( {\sqrt {{x^2} + bx + 1} + x} \right)}}{{\sqrt {{x^2} + bx + 1} + x}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{bx + 1}}{{\sqrt {{x^2} + bx + 1} + x}} = \frac{b}{2} = 2 \Leftrightarrow b = 4\\ \Rightarrow P = 4a + b = 4.\left( { - \frac{1}{2}} \right) + 4 = 2.\end{array}\)
Chọn C.