[LỜI GIẢI] Cho hình chóp S.ABCD. Gọi M N là hai điểm lần lượt thuộc cạnh AB và CD; là mặt phẳng đi qua MN và s - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Cho hình chóp S.ABCD. Gọi M N là hai điểm lần lượt thuộc cạnh AB và CD; là mặt phẳng đi qua MN và s

Cho hình chóp S.ABCD. Gọi M N là hai điểm lần lượt thuộc cạnh AB và CD; là mặt phẳng đi qua MN và s

Câu hỏi

Nhận biết

Cho hình chóp S.ABCD. Gọi M, N là hai điểm lần lượt thuộc cạnh AB và CD; là mặt phẳng đi qua MN và song song với SA. Tìm điều kiện của MN để thiết diện của hình chóp khi cắt bởi mp là một hình thang.


Đáp án đúng: B

Lời giải của Tự Học 365

Giải chi tiết:

Ta có: \(\left\{ \matrix{M \in \left( \alpha \right) \cap \left( {SAB} \right) \hfill \cr \left( \alpha \right)\parallel SA \hfill \cr SA \subset \left( {SAB} \right) \hfill \cr} \right. \Rightarrow \left( {SAB} \right) \cap \left( \alpha \right) = MQ\parallel SA\,\,\left( {Q \in SB} \right).\)

Trong (ABCD), gọi \(I = MN \cap AC\). Ta có:

\(\eqalign{ & I \in MN,\,MN \subset \left( \alpha \right) \Rightarrow I \in \left( \alpha \right). \cr & I \in AC,\,AC \subset \left( {SAC} \right) \Rightarrow T \in \left( {SAC} \right) \cr & \Rightarrow I \in \left( \alpha \right) \cap \left( {SAC} \right). \cr}\)

Vậy \(\left\{ \matrix{ I \in \left( \alpha \right) \cap \left( {SAC} \right) \hfill \cr \left( \alpha \right)\parallel SA \hfill \cr SA \subset \left( {SAC} \right) \hfill \cr} \right. \Rightarrow \left( {SAC} \right) \cap \left( \alpha \right) = IP\parallel SA\,\,\left( {P \in SC} \right).\)

Thiết diện là tứ giác MNPQ.

Để tứ giác MNPQ là hình thang thì cần MQ // NP hoặc MN // PQ.

Trường hợp 1: Nếu MQ // NP thì

Ta có: \(\left\{ \matrix{ MQ\parallel NP \hfill \cr MQ\parallel SA \hfill \cr} \right. \Rightarrow SA\parallel NP,\) mà \(NP \subset \left( {SCD} \right) \Rightarrow SA\parallel \left( {SCD} \right)\) (Vô lí).

Trường hợp 2: Nếu MN // PQ thì ta có các mặt phẳng (ABCD), \(\left( \alpha \right),\) (SBC) đôi một cắt nhau theo ba giao tuyến là MN, BC, PQ nên MN // BC.

Đảo lại nếu MN // BC thì \(\left\{ \matrix{ PQ = \left( \alpha \right) \cap \left( {SBC} \right) \hfill \cr MN \subset \left( \alpha \right) \hfill \cr BC \subset \left( {SBC} \right) \hfill \cr} \right. \Rightarrow PQ\parallel MN\parallel BC\) nên tứ giác MNPQ là hình thang.

Vậy tứ giác MNPQ là hình thang thì điều kiện là MN // BC.

Chọn B.

Ý kiến của bạn