Cho hình chóp S.ABCD có đáy là hình thang ABCD \(\left( {AB//CD} \right)\). Gọi E, F lần lượt là trung điểm của AD, BC. Giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SCD} \right)\) là:
Giải chi tiết:

Ta có: \(\left\{ \begin{array}{l}AB \subset \left( {SAB} \right)\\CD \subset \left( {SCD} \right)\\AB//CD\end{array} \right.\,\, \Rightarrow \left( {SAB} \right) \cap \left( {SCD} \right) = d\),
d là đường thẳng qua S và song song với AB, CD (1)
Do E, F lần lượt là trung điểm của AD, BC \(\Rightarrow EF\) là đường trung bình của hình thang ABCD \( \Rightarrow EF//AB//CD\) (2)
Từ (1), (2) suy ra: Giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SCD} \right)\) là đường thẳng qua S và song song với EF.
Chọn: D