[LỜI GIẢI] Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh aSA vuông góc với mặt phẳng ( ABCD ) và SA = a . - Tự Học 365
KHỞI ĐỘNG CHO MÙA THI ĐẠI HỌC 2026

Ôn đúng trọng tâm – Học chắc từ hôm nay

BẮT ĐẦU NGAY

Hệ thống lại kiến thức lớp 10–11–12

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh aSA vuông góc với mặt phẳng ( ABCD ) và SA = a .

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh aSA vuông góc với mặt phẳng ( ABCD ) và SA = a .

Câu hỏi

Nhận biết

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a,\,\,SA\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\) và \(SA = a\) . Góc giữa 2 mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SBC} \right)\) bằng :


Đáp án đúng: D

Lời giải của Tự Học 365

Giải chi tiết:

Ta có\(BC//AD \Rightarrow \left( {SAD} \right) \cap \left( {SBC} \right) = Sx\) là đường thẳng đi qua \(S\) và song song với \(AD,BC\).

Ta có \(SA \bot AD \Rightarrow SA \bot Sx\).

\(\left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\end{array} \right. \Rightarrow BC \bot \left( {SAB} \right) \Rightarrow BC \bot SB \Rightarrow SB \bot Sx\).

\( \Rightarrow \angle \left( {\left( {SAD} \right);\left( {SBC} \right)} \right) = \angle \left( {SA;SB} \right) = \angle ASB\).

Xét tam giác vuông \(SAB:\,\,\tan \angle ASB = \dfrac{{AB}}{{SA}} = 1 \Rightarrow \angle ASB = {45^0}\).

Vậy \(\angle \left( {\left( {SAD} \right);\left( {SBC} \right)} \right) = {45^0}\).

Chọn D.

Ý kiến của bạn