[LỜI GIẢI] Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc với mp( ABCD ). Gọi ( a - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc với mp( ABCD ). Gọi ( a

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc với mp( ABCD ). Gọi ( a

Câu hỏi

Nhận biết

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a.\) Cạnh bên \(SA\) vuông góc với \(mp\,\,\left( ABCD \right).\) Gọi \(\left( \alpha \right)\) là mặt phẳng qua \(A\) và vuông góc với \(SB.\) Mặt phẳng \(\left( \alpha \right)\) cắt hình chóp theo thiết diện là hình gì ?


Đáp án đúng: B

Lời giải của Tự Học 365

Giải chi tiết:

Ta có AD vuông góc với SA và AB\(\Rightarrow AD\bot mp\,\,\left( SAB \right)\Rightarrow AD\bot SB.\)

Vẽ đường cao AH trong tam giác SAB

Lại có AD và AH qua A và vuông góc với SB.

Vậy mặt phẳng \(\left( \alpha  \right)\) chính là mặt phẳng (AHD).

Mặt khác AD // mp(SBC) mà \(AD\subset mp\,\,\left( AHD \right)\)

Vậy mặt phẳng (SBC) cắt mặt phẳng (AHD) theo giao tuyến HK // AD.

Do đó mặt cắt là hình thang ADKH mà \(AD\bot mp\,\,\left( SAB \right)\)\(\Rightarrow \,AD\bot AH.\)

Vậy ADKH là hình thang vuông.

Chọn B.

Ý kiến của bạn