[LỜI GIẢI] Cho hình chóp S.ABC có A’ B’ lần lượt là trung điểm SA SB G là trọng tâm tam giác ABC. C’ là điểm di - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Cho hình chóp S.ABC có A’ B’ lần lượt là trung điểm SA SB G là trọng tâm tam giác ABC. C’ là điểm di

Cho hình chóp S.ABC có A’ B’ lần lượt là trung điểm SA SB G là trọng tâm tam giác ABC. C’ là điểm di

Câu hỏi

Nhận biết

Cho hình chóp S.ABC có A’, B’ lần lượt là trung điểm SA, SB, G là trọng tâm tam giác ABC. C’ là điểm di động trên cạnh SC. Gọi G’ là giao điểm của SG với (A’B’C’). Khi C’ di động trên SC, biểu thức nào sau đây có giá trị không thay đổi?


Đáp án đúng: D

Lời giải của Tự Học 365

Giải chi tiết:

     

Gọi P là trung điểm của SC, \(N = M'P \cap SG\). Ta dễ dàng chứng minh được N là trung điểm của SG.

Áp dụng định lí Menelaus trong tam giác SNP có : \(\dfrac{{G'S}}{{G'N}}.\dfrac{{M'N}}{{M'P}}.\dfrac{{C'P}}{{C'S}} = 1\,\,\,\left( * \right)\).

Áp dụng định lí Ta-lét ta có : \(\dfrac{{M'N}}{{MG}} = \dfrac{1}{2};\,\,\dfrac{{NP}}{{GC}} = \dfrac{1}{2} \Leftrightarrow \dfrac{{M'N}}{{MG}} = \dfrac{{NP}}{{GC}} \Rightarrow \dfrac{{M'N}}{{NP}} = \dfrac{{MG}}{{GC}} = \dfrac{1}{2} \Rightarrow \dfrac{{M'N}}{{M'P}} = \dfrac{1}{3}\)

Thay vào (*) ta có \(\dfrac{{G'S}}{{G'N}}.\dfrac{1}{3}.\dfrac{{C'P}}{{C'S}} = 1 \Leftrightarrow \dfrac{{G'S}}{{G'N}}.\dfrac{{C'P}}{{C'S}} = 3 \Leftrightarrow \dfrac{{C'P}}{{C'S}} = 3.\dfrac{{G'N}}{{G'S}}\,\,\,\left( {**} \right)\).

Ta có :

\(\begin{array}{l}\dfrac{{G'S}}{{G'N}} = \dfrac{{NG'}}{{SG'}} = \dfrac{{SN - SG'}}{{SG'}} = \dfrac{{\dfrac{1}{2}SG}}{{SG'}} - 1 = \dfrac{1}{2}\dfrac{{SG}}{{SG'}} - 1\\\dfrac{{C'P}}{{C'S}} = \dfrac{{PC'}}{{SC'}} = \dfrac{{SP - SC'}}{{SC'}} = \dfrac{{\dfrac{1}{2}SC}}{{SC'}} - 1 = \dfrac{1}{2}\dfrac{{SC}}{{SC'}} - 1\end{array}\)

Thay vào (**) \( \Rightarrow \dfrac{1}{2}\dfrac{{SC}}{{SC'}} - 1 = 3\left( {\dfrac{1}{2}\dfrac{{SG}}{{SG'}} - 1} \right) \Leftrightarrow \dfrac{1}{2}\left( {3\dfrac{{SG}}{{SG'}} - \dfrac{{SC}}{{SC'}}} \right) = 2 \Leftrightarrow 3\dfrac{{SG}}{{SG'}} - \dfrac{{SC}}{{SC'}} = 4 = const\).

Chọn D.

Ý kiến của bạn