Cho hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l}\frac{{2 - \sqrt {x + 3} }}{{{x^2} - 1}}\;\;\;{\rm{khi }}x \ne 1\\\frac{1}{8} & {\rm{khi}}\;x = 1\end{array} \right..\) Khi đó \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right)\) bằng
Giải chi tiết:
\(\begin{array}{l}\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{2 - \sqrt {x + 3} }}{{{x^2} - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{\left( {2 - \sqrt {x + 3} } \right)\left( {2 + \sqrt {x + 3} } \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)\left( {2 + \sqrt {x + 3} } \right)}}\\ = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{1 - x}}{{\left( {x - 1} \right)\left( {x + 1} \right)\left( {2 + \sqrt {x + 3} } \right)}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{ - 1}}{{\left( {x + 1} \right)\left( {2 + \sqrt {x + 3} } \right)}} = - \frac{1}{8}\end{array}\)
Chọn B.