[LỜI GIẢI] Cho đa giác đều A1A2...A2n nội tiếp trong đường tròn tâm O. Biết rằng số tam giác có đỉnh là 3 trong - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Cho đa giác đều A1A2...A2n nội tiếp trong đường tròn tâm O. Biết rằng số tam giác có đỉnh là 3 trong

Cho đa giác đều A1A2...A2n nội tiếp trong đường tròn tâm O. Biết rằng số tam giác có đỉnh là 3 trong

Câu hỏi

Nhận biết

Cho đa giác đều \({A_1}{A_2}...{A_{2n}}\) nội tiếp trong đường tròn tâm O. Biết rằng số tam giác có đỉnh là 3 trong 2n điểm \({A_1},{A_2},...,{A_n}\) gấp 20 lần số hình chữ nhật có đỉnh là 4 trong 2n điểm \({A_1},{A_2},...,{A_n}\). Vậy giá trị của n là:


Đáp án đúng: C

Lời giải của Tự Học 365

Giải chi tiết:

Số tam giác có 3 đỉnh là 3 trong 2n điểm \({A_1},{A_2},...,{A_n}\) là \(C_{2n}^3\).

Ứng với 2 đường chéo đi qua tâm của đa giác đều \({A_1}{A_2}...{A_{2n}}\) cho tương ứng một hình chữ nhật có 4 đỉnh và là 4 điểm trong 2n điểm \({A_1},{A_2},...,{A_n}\). Và ngược lại mỗi hình chữ nhật như vậy sẽ cho ra 2 đường chéo đi qua tâm của đa giác đều đó.

Số đường chéo đi qua tâm của đa giác đều 2n đỉnh là n nên số hình chữ nhật có 4 đỉnh trong 2n đỉnh là \(C_n^2\).

Theo giả thiết ta có:

\(\eqalign{  & C_{2n}^3 = 20C_n^2 \Leftrightarrow {{\left( {2n} \right)!} \over {3!\left( {2n - 3} \right)!}} = 20{{n!} \over {2!\left( {n - 2} \right)!}} \Leftrightarrow {{2n\left( {2n - 1} \right)\left( {2n - 2} \right)} \over 6} = 10n\left( {n - 1} \right)  \cr   &  \Leftrightarrow 4{n^3} - 6{n^2} + 2n = 30{n^2} - 30n \Leftrightarrow 4{n^3} - 36{n^2} + 32n = 0 \Leftrightarrow \left[ \matrix{  n = 8\,\left( {tm} \right) \hfill \cr   n = 1\,\,\left( {ktm} \right) \hfill \cr}  \right. \cr} \)

(Khi n = 1 thì t có đa giác đều 2 đỉnh, vô lý).

Vậy n = 8.

Chọn C.

Ý kiến của bạn