\(\sqrt 3 \sin x + \cos x = 1\)
Giải chi tiết:
\(\begin{array}{l}\,\,\sqrt 3 \sin x + \cos x = 1\\ \Leftrightarrow \dfrac{{\sqrt 3 }}{2}\sin x + \dfrac{1}{2}\cos x = \dfrac{1}{2}\\ \Leftrightarrow \sin x\cos \dfrac{\pi }{6} + \cos x\sin \dfrac{\pi }{6} = \dfrac{1}{2}\\ \Leftrightarrow \sin \left( {x + \dfrac{\pi }{6}} \right) = \dfrac{1}{2}\\ \Leftrightarrow \left[ \begin{array}{l}x + \dfrac{\pi }{6} = \dfrac{\pi }{6} + k2\pi \\x + \dfrac{\pi }{6} = \dfrac{{5\pi }}{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = k2\pi \\x = \dfrac{{2\pi }}{3} + k2\pi \end{array} \right.\,\,\left( {k \in Z} \right)\end{array}\)