Biểu thức \(\frac{{{x^{10}}}}{{10!}} + \frac{{{x^9}}}{{9!}}.\frac{{\left( {1 - x} \right)}}{{1!}} + \frac{{{x^8}}}{{8!}}.\frac{{{{\left( {1 - x} \right)}^2}}}{{2!}} + ... + \frac{{{{\left( {1 - x} \right)}^{10}}}}{{10!}}\) bằng
Giải chi tiết:
Ta có: \(\frac{{{x^k}}}{{k!}}.\frac{{{{\left( {1 - x} \right)}^{10 - k}}}}{{\left( {10 - k} \right)!}} = \frac{1}{{10!}}.\frac{{10!}}{{k!\left( {10 - k} \right)!}}.{x^k}.{\left( {1 - x} \right)^{10 - k}} = \frac{1}{{10!}}.C_{10}^k.{x^k}.{\left( {1 - x} \right)^{10 - k}}\) với\(0 \le k \le 10\).
\(\begin{array}{l} \Rightarrow \frac{{{x^{10}}}}{{10!}} + \frac{{{x^9}}}{{9!}}.\frac{{\left( {1 - x} \right)}}{{1!}} + \frac{{{x^8}}}{{8!}}.\frac{{{{\left( {1 - x} \right)}^2}}}{{2!}} + ... + \frac{{{{\left( {1 - x} \right)}^{10}}}}{{10!}} = \frac{1}{{10!}}\sum\limits_{k = 0}^{10} {C_{10}^k.{x^k}.{{\left( {1 - x} \right)}^{10 - k}}} \\ \Leftrightarrow \frac{{{x^{10}}}}{{10!}} + \frac{{{x^9}}}{{9!}}.\frac{{\left( {1 - x} \right)}}{{1!}} + \frac{{{x^8}}}{{8!}}.\frac{{{{\left( {1 - x} \right)}^2}}}{{2!}} + ... + \frac{{{{\left( {1 - x} \right)}^{10}}}}{{10!}} = \frac{1}{{10!}}{\left( {x + 1 - x} \right)^{10}} = \frac{1}{{10!}}\end{array}\)
Chọn C.