[LỜI GIẢI] Biểu diễn nghiệm của phương trình cos x + cos 3x + 2cos 5x = 0 trên đường tròn lượng giác gồm bao nh - Tự Học 365
KHỞI ĐỘNG CHO MÙA THI ĐẠI HỌC 2026

Ôn đúng trọng tâm – Học chắc từ hôm nay

BẮT ĐẦU NGAY

Biểu diễn nghiệm của phương trình cos x + cos 3x + 2cos 5x = 0 trên đường tròn lượng giác gồm bao nh

Biểu diễn nghiệm của phương trình cos x + cos 3x + 2cos 5x = 0 trên đường tròn lượng giác gồm bao nh

Câu hỏi

Nhận biết

Biểu diễn nghiệm của phương trình \(\cos x\, + \,\cos 3x\, + \,2\cos 5x\, = \,0\) trên đường tròn lượng giác gồm bao nhiêu điểm?


Đáp án đúng: A

Lời giải của Tự Học 365

Giải chi tiết:

Phương trình:

\(\begin{array}{l}\,Pt \Leftrightarrow \,\,\,\,\left( {\cos 5x\, + \,\cos x} \right)\, + \,(\cos 3x\, + \,\cos 5x)\, = \,0\,\,\,\,\,\\\,\,\,\,\,\,\,\,\, \Leftrightarrow \,\,\,\,\,2\cos 3x\,.\,\cos 2x\, + \,2\cos 4x\,.\,\cos x\, = \,0\\\,\,\,\,\,\,\,\,\, \Leftrightarrow \,\,\,\,\,(4{\cos ^3}x - \,3\cos x)\,.\,\cos 2x\, + \,\cos 4x\, - \,\cos 3x\, = 0\\\,\,\,\,\,\,\,\,\, \Leftrightarrow \,\,\,\,\left[ {(4{{\cos }^2}x - \,3)\cos 2x\, + \,\,\cos 4x} \right]\,.\,cosx\, = 0\\\,\,\,\,\,\,\,\,\, \Leftrightarrow \,\,\,\,\left\{ {\left[ {2(1\, + \,\cos 2x)\, - \,3} \right]\cos 2x\, + \,2{{\cos }^2}2x\, - \,1} \right\}.\cos x\, = \,0\\\,\,\,\,\,\,\,\,\, \Leftrightarrow \,\,\,\,\,({\cos ^2}2x\, - \,\cos 2x\, - \,1)\cos x\, = \,0\\\,\,\,\,\,\,\,\,\, \Leftrightarrow \,\,\,\,\,\left[ \begin{array}{l}\cos x\, = \,0\\\cos 2x\, = \,\frac{{1 + \sqrt {17} }}{8}\, = \,\cos 2{\alpha _1}\\\cos 2x\, = \,\frac{{1 - \sqrt {17} }}{8}\, = \,\cos 2{\alpha _2}\end{array} \right.\,\,\,\, \Leftrightarrow \,\,\,\,\left[ \begin{array}{l}x\, = \,\frac{\pi }{2}\, + \,k\pi \\2x\, = \, \pm 2{\alpha _1}\, + \,m2\pi \\2x\, = \, \pm 2{\alpha _2} + \,l2\pi \end{array} \right.\,\,\, \Leftrightarrow \,\,\,\left[ \begin{array}{l}x\, = \,\frac{\pi }{2}\, + \,k\pi \\x\, = \, \pm \frac{{{\alpha _1}}}{2}\, + \,m\pi \\x\, = \, \pm \frac{{{\alpha _2}}}{2}\, + \,l\pi \end{array} \right.\,\,\,\,\,\,\,\left( {k,\;m,\;l \in \mathbb{Z}} \right)\end{array}\)

Với họ mỗi nghiệm được biểu diễn bởi 2 điểm phân biệt, vậy biểu diễn nghiệm của phương trình gồm 10 điểm.

Ý kiến của bạn