\(4\sqrt 3 \sin x\cos x + 4{\cos ^2}x = 2{\sin ^2}x + \frac{5}{2}.\)
Giải chi tiết:
\(\begin{array}{l}4\sqrt 3 \sin x.\cos x + 4{\cos ^2}x = 2{\sin ^2}x + \frac{5}{2}\\ \Leftrightarrow - 2{\sin ^2}x + 4\sqrt 3 \sin x.\cos x + 4{\cos ^2}x = \frac{5}{2}(1)\end{array}\)
+Xét \(\cos x = 0 \Rightarrow (1) \Leftrightarrow - 2{\sin ^2}x = \frac{5}{2} \Leftrightarrow {\sin ^2}x = \frac{{ - 5}}{4}(L) \Rightarrow cosx = 0(L)\)
+Xét \(\cos x \ne 0\)
Chia cả 2 vế của (1) cho \({\cos ^2}x\)
\(\begin{array}{l} \Rightarrow - 2{\tan ^2}x + 4\sqrt 3 {\mathop{\rm tanx}\nolimits} + 4 = \frac{5}{2}\\ \Leftrightarrow - 2{\tan ^2}x + 4\sqrt 3 {\mathop{\rm tanx}\nolimits} + 4 - \frac{5}{2}(1 + {\tan ^2}x) = 0\\ \Leftrightarrow \left[ \begin{array}{l}{\mathop{\rm tanx}\nolimits} = \sqrt 3 \\{\mathop{\rm tanx}\nolimits} = \frac{{ - \sqrt 3 }}{9}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k\pi \\x = \arctan \left( {\frac{{ - \sqrt 3 }}{9}} \right) + k\pi \end{array} \right.\left( {k \in Z} \right)\end{array}\)
Chọn A.