Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(A\), \(\widehat{ABC}={{60}^{0}}\), tam giác \(SBC\) là tam giác đều có bằng cạnh \(2a\) và nằm trong mặt phẳng vuông với đáy. Gọi \(\varphi \) là góc giữa hai mặt phẳng \(\left( SAC \right)\) và \(\left( ABC \right)\). Mệnh đề nào sau đây đúng?
Giải chi tiết:

Gọi \(H\) là trung điểm của \(BC\), suy ra \(SH\bot BC\Rightarrow SH\bot \left( ABC \right)\).
Gọi \(K\) là trung điểm \(AC\), suy ra \(HK\)//\(AB\) nên \(HK\bot AC\).
Ta có \(\left\{ \begin{array}{l}AC \bot HK\\AC \bot SH\end{array} \right. \Rightarrow AC \bot \left( {SHK} \right) \Rightarrow AC \bot SK.\)
\(\left\{ \begin{array}{l}\left( {SAC} \right) \cap \left( {ABC} \right) = AC\\\left( {SAC} \right) \supset SK \bot AC\\\left( {ABC} \right) \supset HK \bot AC\end{array} \right. \Rightarrow \widehat {\left( {\left( {SAC} \right);\left( {ABC} \right)} \right)} = \widehat {\left( {SK;HK} \right)} = \widehat {SKH}.\)
Tam giác vuông \(ABC\), có \(AB=BC.\cos \widehat{ABC}=a\Rightarrow HK=\frac{1}{2}AB=\frac{a}{2}.\)
Tam giác vuông \(SHK\), có \(\tan \widehat{SKH}=\frac{SH}{HK}=\frac{\frac{2a\sqrt{3}}{2}}{\frac{a}{2}}=2\sqrt{3}\).
Chọn B.