[LỜI GIẢI] Cho hàm số f( x ) = 2cos ^3x3 + sin ^3x - 2cos x - 3sin x. Biểu diễn n - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Cho hàm số f( x ) = 2cos ^3x3 + sin ^3x - 2cos x - 3sin x. Biểu diễn n

Cho hàm số f( x ) = 2cos ^3x3 + sin ^3x - 2cos x - 3sin x. Biểu diễn n

Câu hỏi

Nhận biết

Cho hàm số \(f \left( x \right) = \frac{{2{{ \cos }^3}x}}{3} + { \sin ^3}x - 2 \cos x - 3 \sin x. \) Biểu diễn nghiệm của phương trình \(f' \left( x \right) = 0 \) trên đường tròn ta được mấy điểm phân biệt?


Đáp án đúng: B

Lời giải của Tự Học 365

Giải chi tiết:

Ta có : \(f\left( x \right) = \frac{{2{{\cos }^3}x}}{3} + {\sin ^3}x - 2\cos x - 3\sin x\) 

\(\begin{array}{l} \Rightarrow f'\left( x \right) =  - 2{\cos ^2}x\sin x + 3{\sin ^2}x\cos x + 2\sin x - 3\cos x\\ \Rightarrow f'\left( x \right) = 0\\ \Leftrightarrow  - 2{\cos ^2}x\sin x + 3{\sin ^2}x\cos x + 2\sin x - 3\cos x = 0\\ \Leftrightarrow  - 2\sin x\left( {{{\cos }^2}x - 1} \right) + 3\cos x\left( {{{\sin }^2}x - 1} \right) = 0\\ \Leftrightarrow 2\sin x.{\sin ^2}x - 3\cos x.{\cos ^2}x = 0\\ \Leftrightarrow 2{\sin ^3}x - 3{\cos ^3}x = 0\,\,\,\,\,\,\left( * \right)\end{array}\)

Với \(\cos x = 0 \Rightarrow \left( * \right) \Leftrightarrow 2{\sin ^3}x = 0\) (vô lý)

\( \Rightarrow \cos x = 0\) không là nghiệm của phương trình \(\left( * \right).\)

Với \(\cos x \ne 0,\) chia cả hai vế của phương trình \(\left( * \right)\) cho \({\cos ^3}x\) ta được :

\(\begin{array}{l}\left( * \right) \Leftrightarrow 2.\frac{{{{\sin }^3}x}}{{{{\cos }^3}x}} - 3.\frac{{{{\cos }^3}x}}{{{{\cos }^3}x}} = 0\\ \Leftrightarrow 2{\tan ^3}x - 3 = 0 \Leftrightarrow 2{\tan ^3}x = 3\\ \Leftrightarrow {\tan ^3}x = \frac{3}{2} \Leftrightarrow \tan x = \sqrt[3]{{\frac{3}{2}}}\\ \Leftrightarrow x = \arctan \sqrt[3]{{\frac{3}{2}}}+k\pi\end{array}\) 

Chọn B. 

Ý kiến của bạn