Phương trình \({ \sin ^2}x + { \sin ^2}3x = 2{ \sin ^2}2x \)có số nghiệm thuộc \( \left[ {0;4 \pi } \right] \) mà \( \sin x > 0; \, \, \cos x > 0 \) là?
Giải chi tiết:
\(\begin{array}{l}\;\;\;\;\;{\sin ^2}x + {\sin ^2}3x = 2{\sin ^2}2x\\ \Leftrightarrow \frac{{1 - \cos 2x}}{2} + \frac{{1 - \cos 6x}}{2} = 2 \cdot \frac{{1 - \cos 4x}}{2}\\ \Leftrightarrow \cos 2x + \cos 6x = 2\cos 4x \Leftrightarrow \cos 4x.\cos 2x = \cos 4x\\ \Leftrightarrow \cos 4x\left( {\cos 2x - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}\cos 4x = 0\\\cos 2x = 1\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}4x = \frac{\pi }{2} + k\pi \\2x = m2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{8} + \frac{{k\pi }}{4}\\x = m\pi \end{array} \right.\left( {k,\;m \in \mathbb{Z}} \right)\end{array}\)
Với \(\sin x > 0;\,\,\cos x > 0,\;\,x \in \left[ {0;4\pi } \right]\;\) thì \(x \in \left( {0;\frac{\pi }{2}} \right) \cup \left( {2\pi ;\frac{{5\pi }}{2}} \right)\). Khi đó ta có:
\(\begin{array}{l}0 < \frac{\pi }{8} + \frac{{k\pi }}{4} < \frac{\pi }{2} \Leftrightarrow - \frac{1}{2} < k < \frac{3}{8} \Leftrightarrow k \in \left\{ {0;\;1} \right\}\\2\pi < \frac{\pi }{8} + \frac{{k\pi }}{4} < \frac{{5\pi }}{2} \Leftrightarrow \frac{{15}}{2} < k < \frac{{19}}{2} \Leftrightarrow k \in \left\{ {8;\;9} \right\}\\0 < m\pi < \frac{\pi }{2} \Leftrightarrow 0 < m < \frac{1}{2} \Leftrightarrow m \in \emptyset \\2\pi < m\pi < \frac{{5\pi }}{2} \Leftrightarrow 2 < m < \frac{5}{2} \Leftrightarrow m \in \emptyset \end{array}\)
Vậy phương trình có 4 nghiệm thõa mãn.
Chọn B.