\(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {1 + \tan x} - \sqrt {1 + \sin x} }}{{{x^3}}}\)
Giải chi tiết:
\(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {1 + \tan x} - \sqrt {1 + \sin x} }}{{{x^3}}}\)
\(\begin{array}{l} = \mathop {\lim }\limits_{x \to 0} \frac{{1 + \tan x - 1 - \sin x}}{{{x^3}\left( {\sqrt {1 + \tan x} + \sqrt {1 + \sin x} } \right)}}\\ = \mathop {\lim }\limits_{x \to 0} \frac{{\frac{{\sin x}}{{\cos x}} - \sin x}}{{{x^3}\left( {\sqrt {1 + \tan x} + \sqrt {1 + \sin x} } \right)}}\\ = \mathop {\lim }\limits_{x \to 0} \frac{{\sin x\left( {1 - \cos x} \right)}}{{{x^3}\cos x\left( {\sqrt {1 + \tan x} + \sqrt {1 + \sin x} } \right)}}\\ = \mathop {\lim }\limits_{x \to 0} \frac{{2\sin x{{\sin }^2}\frac{x}{2}}}{{{x^3}\cos x\left( {\sqrt {1 + \tan x} + \sqrt {1 + \sin x} } \right)}}\\ = 2\mathop {\lim }\limits_{x \to 0} \frac{{\sin x}}{x}.\frac{{{{\sin }^2}\frac{x}{2}}}{{\frac{{{x^2}}}{4}.4}}\frac{1}{{\cos x\left( {\sqrt {1 + \tan x} + \sqrt {1 + \sin x} } \right)}}\\ = 2.1.\frac{1}{4}.\frac{1}{{1.2}} = \frac{1}{4}\end{array}\)
Chọn C.