\(\mathop {\lim }\limits_{x \to \frac{\pi }{4}} \frac{{\sin \left( {\frac{\pi }{4} - x} \right)}}{{1 - \sqrt 2 \sin x}}\)
Giải chi tiết:
\(L = \mathop {\lim }\limits_{x \to \frac{\pi }{4}} \frac{{\sin \left( {\frac{\pi }{4} - x} \right)}}{{1 - \sqrt 2 \sin x}}\)
Đặt \(t = \frac{\pi }{4} - x\), khi \(x \to \frac{\pi }{4}\) thì \(t \to 0\), khi đó ta có:
\(\begin{array}{l}L = \mathop {\lim }\limits_{t \to 0} \frac{{\sin t}}{{1 - \sqrt 2 \sin \left( {\frac{\pi }{4} - t} \right)}}\\\,\,\,\,\, = \mathop {\lim }\limits_{t \to 0} \frac{{\sin t}}{{1 - \sqrt 2 \left( {\frac{{\sqrt 2 }}{2}\cos t - \frac{{\sqrt 2 }}{2}\sin t} \right)}}\\\,\,\,\,\, = \mathop {\lim }\limits_{t \to 0} \frac{{\sin t}}{{1 - \cos t + \sin t}} = \mathop {\lim }\limits_{t \to 0} \frac{1}{{\frac{{1 - \cos t}}{{\sin t}} + 1}}\\\,\,\,\,\, = \mathop {\lim }\limits_{t \to 0} \frac{1}{{\frac{{2{{\sin }^2}\frac{t}{2}}}{{2\sin \frac{t}{2}\cos \frac{t}{2}}} + 1}} = \mathop {\lim }\limits_{t \to 0} \frac{1}{{\frac{{\sin \frac{t}{2}}}{{\cos \frac{t}{2}}} + 1}} = \frac{1}{{0 + 1}} = 1\end{array}\)
Chọn A.