\(\mathop {\lim }\limits_{x \to 0} \frac{{1 - {{\cos }^3}x}}{{x.\sin x}}\)
Giải chi tiết:
\(\mathop {\lim }\limits_{x \to 0} \frac{{1 - {{\cos }^3}x}}{{x.\sin x}} = \mathop {\lim }\limits_{x \to 0} \frac{{\left( {1 - \cos x} \right)\left( {1 + \cos x + {{\cos }^2}x} \right)}}{{x.\sin x}}\)
\(\begin{array}{l} = \mathop {\lim }\limits_{x \to 0} \left[ {\left( {1 + \cos x + {{\cos }^2}x} \right)\frac{{2{{\sin }^2}\frac{x}{2}}}{{2x\sin \frac{x}{2}\cos \frac{x}{2}}}} \right]\\ = \mathop {\lim }\limits_{x \to 0} \left[ {\left( {1 + \cos x + {{\cos }^2}x} \right)\frac{{\sin \frac{x}{2}}}{{x{\mathop{\rm s}\nolimits} \cos \frac{x}{2}}}} \right]\\ = \mathop {\lim }\limits_{x \to 0} \left[ {\left( {1 + \cos x + {{\cos }^2}x} \right)\frac{1}{{2\cos \frac{x}{2}}}\frac{{\sin \frac{x}{2}}}{{\frac{x}{2}}}} \right] = \frac{3}{2}\end{array}\)
Chọn B.