\(\mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{\sqrt {1 - x} + x - 1}}{{\sqrt {{x^2} - {x^3}} }}\)
Giải chi tiết:
\(\mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{\sqrt {1 - x} + x - 1}}{{\sqrt {{x^2} - {x^3}} }} = \mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{\sqrt {1 - x} - {{\left( {\sqrt {1 - x} } \right)}^2}}}{{\sqrt {{x^2}\left( {1 - x} \right)} }}\)
\( = \mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{\sqrt {1 - x} \left( {1 - \sqrt {1 - x} } \right)}}{{x\sqrt {1 - x} }} = \mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{1 - \sqrt {1 - x} }}{x} = 1\).
Chọn C.