\(\mathop {\lim }\limits_{x \to {3^ + }} \dfrac{{\sqrt {{x^2} - 4x + 3} }}{{3 - x}}\)
Giải chi tiết:
\(\mathop {\lim }\limits_{x \to {3^ + }} \dfrac{{\sqrt {{x^2} - 4x + 3} }}{{3 - x}} = \mathop {\lim }\limits_{x \to {3^ + }} \dfrac{{\sqrt {\left( {x - 1} \right)\left( {x - 3} \right)} }}{{3 - x}}\) \( = \mathop {\lim }\limits_{x \to {3^ + }} \dfrac{{\sqrt {x - 1} \sqrt {x - 3} }}{{ - {{\left( {\sqrt {x - 3} } \right)}^2}}} = \mathop {\lim }\limits_{x \to {3^ + }} \dfrac{{ - \sqrt {x - 1} }}{{\sqrt {x - 3} }}\).
Vì \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {3^ + }} \left( { - \sqrt {x - 1} } \right) = - \sqrt 2 \\\mathop {\lim }\limits_{x \to {3^ + }} \sqrt {x - 3} = 0\\\sqrt {x - 3} > 0\,\,x > 3\end{array} \right.\) nên \(\mathop {\lim }\limits_{x \to {3^ + }} \dfrac{{ - \sqrt {x - 1} }}{{\sqrt {x - 3} }} = - \infty \).
Vậy \(\mathop {\lim }\limits_{x \to {3^ + }} \dfrac{{\sqrt {{x^2} - 4x + 3} }}{{3 - x}} = - \infty \).
Chọn B.