\(\mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{x + 2\sqrt x }}{{x - \sqrt x }}\)
Giải chi tiết:
\(\mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{x + 2\sqrt x }}{{x - \sqrt x }}\) \( = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sqrt x \left( {\sqrt x + 2} \right)}}{{\sqrt x \left( {\sqrt x - 1} \right)}} = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sqrt x + 2}}{{\sqrt x - 1}} = - 2\).
Chọn B.