\(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} \dfrac{{2x - 1}}{{{x^3} + 3{x^2} - 4}}\)
Giải chi tiết:
\(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} \dfrac{{2x - 1}}{{{x^3} + 3{x^2} - 4}} = \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} \dfrac{{2x - 1}}{{\left( {x - 1} \right){{\left( {x + 2} \right)}^2}}}\)
Vì \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} \dfrac{{2x - 1}}{{x - 1}} = \dfrac{{2.\left( { - 2} \right) - 1}}{{ - 2 - 1}} = \dfrac{5}{3}\\\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} {\left( {x + 2} \right)^2} = 0\\{\left( {x + 2} \right)^2} > 0\,\,\forall x > - 2\end{array} \right.\) nên \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} \dfrac{{2x - 1}}{{\left( {x - 1} \right){{\left( {x + 2} \right)}^2}}} = + \infty \).
Vậy \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} \dfrac{{2x - 1}}{{{x^3} + 3{x^2} - 4}} = - \infty \).
Chọn B.