\(\mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{x + 1}}{{\sqrt {{x^2} - 4} }}\)
Giải chi tiết:
\(\mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{x + 1}}{{\sqrt {{x^2} - 4} }}\).
Vì \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {2^ + }} \left( {x + 1} \right) = 3\\\mathop {\lim }\limits_{x \to {2^ + }} \sqrt {{x^2} - 4} = 0\\\sqrt {{x^2} - 4} > 0\,\,\forall x > 2\end{array} \right.\) \( \Rightarrow \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{x + 1}}{{\sqrt {{x^2} - 4} }} = + \infty \).
Vậy \(\mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{x + 1}}{{\sqrt {{x^2} - 4} }} = + \infty \).
Chọn C.