\(\mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{\sqrt {3 + x} }}{{\sqrt {1 - x} }}\)
Giải chi tiết:
\(\mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{\sqrt {3 + x} }}{{\sqrt {1 - x} }}\).
Vì \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {1^ - }} \sqrt {3 + x} = \sqrt {3 + 1} = 2\\\mathop {\lim }\limits_{x \to {1^ - }} \sqrt {1 - x} = 0\\\sqrt {1 - x} > 0\,\,\forall x < 1\end{array} \right.\)\( \Rightarrow \mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{\sqrt {3 + x} }}{{\sqrt {1 - x} }} = + \infty \).
Vậy \(\mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{\sqrt {3 + x} }}{{\sqrt {1 - x} }} = + \infty \).
Chọn A.