\(\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt[n]{{1 + ax}} - 1}}{{\sqrt[m]{{1 + bx}} - 1}}\,\,\,\left( {ab \ne 0,m,n \ge 2} \right)\)
Giải chi tiết:
\(\begin{array}{l}
= \mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt[n]{{1 + ax}} - 1}}{{\sqrt[m]{{1 + bx}} - 1}}\,\,\,\left( {ab \ne 0,m,n \ge 2} \right)\\
= \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\sqrt[n]{{1 + ax}} - 1} \right)\left( {{{\sqrt[n]{{1 + ax}}}^{n - 1}} + {{\sqrt[n]{{1 + ax}}}^{n - 2}} + ... + \sqrt[n]{{1 + ax}} + 1} \right)\left( {{{\sqrt[m]{{1 + bx}}}^{m - 1}} + {{\sqrt[m]{{1 + bx}}}^{m - 2}} + ... + \sqrt[m]{{1 + bx}} + 1} \right)}}{{\left( {\sqrt[m]{{1 + bx}} - 1} \right)\left( {{{\sqrt[m]{{1 + bx}}}^{m - 1}} + {{\sqrt[m]{{1 + bx}}}^{m - 2}} + ... + \sqrt[m]{{1 + bx}} + 1} \right)\left( {{{\sqrt[n]{{1 + ax}}}^{n - 1}} + {{\sqrt[n]{{1 + ax}}}^{n - 2}} + ... + \sqrt[n]{{1 + ax}} + 1} \right)}}\\
= \mathop {\lim }\limits_{x \to 0} \dfrac{{ax\left( {{{\sqrt[m]{{1 + bx}}}^{m - 1}} + {{\sqrt[m]{{1 + bx}}}^{m - 2}} + ... + \sqrt[m]{{1 + bx}} + 1} \right)}}{{bx\left( {{{\sqrt[n]{{1 + ax}}}^{n - 1}} + {{\sqrt[n]{{1 + ax}}}^{n - 2}} + ... + \sqrt[n]{{1 + ax}} + 1} \right)}}\\
= \dfrac{a}{b}\mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {{{\sqrt[m]{{1 + bx}}}^{m - 1}} + {{\sqrt[m]{{1 + bx}}}^{m - 2}} + ... + \sqrt[m]{{1 + bx}} + 1} \right)}}{{{{\sqrt[n]{{1 + ax}}}^{n - 1}} + {{\sqrt[n]{{1 + ax}}}^{n - 2}} + ... + \sqrt[n]{{1 + ax}} + 1}}\\
= \dfrac{a}{b}\dfrac{{1 + 1 + 1 + ... + 1\,\,\,\left( {m\,\,chu\,\,so\,\,1} \right)}}{{1 + 1 + 1 + ... + 1\,\,\,\left( {n\,\,chu\,\,so\,\,1} \right)}} = \dfrac{{am}}{{bn}}
\end{array}\)
Chọn D.