\(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {{x^2} + 1} + 2\sqrt {x + 4} - 5}}{x}\)
Giải chi tiết:
\(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {{x^2} + 1} + 2\sqrt {x + 4} - 5}}{x}\)
\(\begin{array}{l} = \mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {{x^2} + 1} - 1 + 2\left( {\sqrt {x + 4} - 2} \right)}}{x}\\ = \mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {{x^2} + 1} - 1}}{x} + 2\mathop {\lim }\limits_{x \to 0} \left( {\sqrt {x + 4} - 2} \right)\\ = \mathop {\lim }\limits_{x \to 0} \frac{{\left( {\sqrt {{x^2} + 1} - 1} \right)\left( {\sqrt {{x^2} + 1} + 1} \right)}}{{x\left( {\sqrt {{x^2} + 1} + 1} \right)}} + 2\mathop {\lim }\limits_{x \to 0} \frac{{\left( {\sqrt {x + 4} - 2} \right)\left( {\sqrt {x + 4} + 2} \right)}}{{x\left( {\sqrt {x + 4} + 2} \right)}}\\ = \mathop {\lim }\limits_{x \to 0} \frac{{{x^2}}}{{x\left( {\sqrt {{x^2} + 1} + 1} \right)}} + 2\mathop {\lim }\limits_{x \to 0} \frac{x}{{x\left( {\sqrt {x + 4} + 2} \right)}}\\ = \mathop {\lim }\limits_{x \to 0} \frac{x}{{\sqrt {{x^2} + 1} + 1}} + 2\mathop {\lim }\limits_{x \to 0} \frac{1}{{\sqrt {x + 4} + 2}} = 0 + \frac{2}{{2 + 2}} = \frac{1}{2}\end{array}\)
Chọn A.