\(\mathop {\lim }\limits_{x \to 2} \frac{{{{\left( {1 + x} \right)}^3} - 27}}{{{x^3} - x - 6}}\)
Giải chi tiết:
\(\mathop {\lim }\limits_{x \to 2} \frac{{{{\left( {1 + x} \right)}^3} - 27}}{{{x^3} - x - 6}}\)
\( = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {1 + x - 3} \right)\left[ {{{\left( {1 + x} \right)}^2} + 3\left( {1 + x} \right) + 9} \right]}}{{\left( {x - 2} \right)\left( {{x^2} + 2x + 3} \right)}}\)
\( = \mathop {\lim }\limits_{x \to 2} \frac{{{{\left( {1 + x} \right)}^2} + 3\left( {1 + x} \right) + 9}}{{{x^2} + 2x + 3}} = \frac{{27}}{{11}}\).
Chọn D.