\(\mathop {\lim }\limits_{x \to - \infty } \dfrac{{{x^9} + 6x + 8}}{{4\left| {{x^9}} \right| - 2x + 3}}\)
Giải chi tiết:
\(\mathop {\lim }\limits_{x \to - \infty } \dfrac{{{x^9} + 6x + 8}}{{4\left| {{x^9}} \right| - 2x + 3}} = \mathop {\lim }\limits_{x \to - \infty } \dfrac{{{x^9} + 6x + 8}}{{ - 4{x^9} - 2x + 3}}\)
\( = \mathop {\lim }\limits_{x \to - \infty } \dfrac{{{x^9}\left( {1 + \dfrac{6}{{{x^8}}} + \dfrac{8}{{{x^9}}}} \right)}}{{{x^9}\left( { - 4 - \dfrac{2}{{{x^8}}} + \dfrac{3}{{{x^9}}}} \right)}} = \mathop {\lim }\limits_{x \to - \infty } \dfrac{{1 + \dfrac{6}{{{x^8}}} + \dfrac{8}{{{x^9}}}}}{{ - 4 - \dfrac{2}{{{x^8}}} + \dfrac{3}{{{x^9}}}}} = - \dfrac{1}{4}\).
Vậy \(\mathop {\lim }\limits_{x \to - \infty } \dfrac{{{x^9} + 6x + 8}}{{4\left| {{x^9}} \right| - 2x + 3}} = - \dfrac{1}{4}\).
Chọn B.