\(\mathop {\lim }\limits_{x \to \pm \infty } \left( {\sqrt {{x^2} + 2x} - \sqrt {{x^2} - 2x} } \right)\)
Giải chi tiết:
Ta có:
\(\begin{array}{l}\,\,\,\,\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + 2x} - \sqrt {{x^2} - 2x} } \right)\\ = \mathop {\lim }\limits_{x \to + \infty } \dfrac{{\left( {\sqrt {{x^2} + 2x} - \sqrt {{x^2} - 2x} } \right)\left( {\sqrt {{x^2} + 2x} + \sqrt {{x^2} - 2x} } \right)}}{{\sqrt {{x^2} + 2x} + \sqrt {{x^2} - 2x} }}\\ = \mathop {\lim }\limits_{x \to + \infty } \dfrac{{{x^2} + 2x - {x^2} + 2x}}{{\sqrt {{x^2} + 2x} + \sqrt {{x^2} - 2x} }}\\ = \mathop {\lim }\limits_{x \to + \infty } \dfrac{{4x}}{{\sqrt {{x^2} + 2x} + \sqrt {{x^2} - 2x} }}\\ = \mathop {\lim }\limits_{x \to + \infty } \dfrac{4}{{\sqrt {1 + \dfrac{2}{x}} + \sqrt {1 - \dfrac{2}{x}} }}\\ = \dfrac{4}{{1 + 1}} = 2\end{array}\)
\(\begin{array}{l}\,\,\,\,\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + 2x} - \sqrt {{x^2} - 2x} } \right)\\ = \mathop {\lim }\limits_{x \to - \infty } \dfrac{{\left( {\sqrt {{x^2} + 2x} - \sqrt {{x^2} - 2x} } \right)\left( {\sqrt {{x^2} + 2x} + \sqrt {{x^2} - 2x} } \right)}}{{\sqrt {{x^2} + 2x} + \sqrt {{x^2} - 2x} }}\\ = \mathop {\lim }\limits_{x \to - \infty } \dfrac{{{x^2} + 2x - {x^2} + 2x}}{{\sqrt {{x^2} + 2x} + \sqrt {{x^2} - 2x} }}\\ = \mathop {\lim }\limits_{x \to - \infty } \dfrac{{4x}}{{\sqrt {{x^2} + 2x} + \sqrt {{x^2} - 2x} }}\\ = \mathop {\lim }\limits_{x \to - \infty } \dfrac{4}{{ - \sqrt {1 + \dfrac{2}{x}} - \sqrt {1 - \dfrac{2}{x}} }}\\ = \dfrac{4}{{ - 1 - 1}} = - 2\end{array}\)
Chọn D.