\(\mathop {\lim }\limits_{x \to - 1} \dfrac{{{x^4} - 5{x^2} + 4}}{{{x^3} + {x^2} + x + 1}}\)
Giải chi tiết:
\(\mathop {\lim }\limits_{x \to - 1} \dfrac{{{x^4} - 5{x^2} + 4}}{{{x^3} + {x^2} + x + 1}} = \mathop {\lim }\limits_{x \to - 1} \dfrac{{\left( {x - 2} \right)\left( {x + 2} \right)\left( {x - 1} \right)\left( {x + 1} \right)}}{{{x^2}\left( {x + 1} \right) + \left( {x + 1} \right)}}\)
\(\begin{array}{l} = \mathop {\lim }\limits_{x \to - 1} \dfrac{{\left( {x - 2} \right)\left( {x + 2} \right)\left( {x - 1} \right)\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {{x^2} + 1} \right)}}\\ = \mathop {\lim }\limits_{x \to - 1} \dfrac{{\left( {x - 2} \right)\left( {x + 2} \right)\left( {x - 1} \right)}}{{{x^2} + 1}} = \dfrac{{ - 3.1.\left( { - 2} \right)}}{{{{\left( { - 1} \right)}^2} + 1}} = 3\end{array}\)
Chọn B.