Giải phương trình: \(\sin x + \sqrt 3 \cos x = 2\sin \left( {x + \frac{\pi }{6}} \right).\)
Giải chi tiết:
\(\begin{array}{l}{\rm{ }}\sin x + \sqrt 3 \cos x = 2\sin \left( {x + \frac{\pi }{6}} \right)\\ \Leftrightarrow \frac{1}{2}\sin x + \frac{{\sqrt 3 }}{2}\cos x = \sin \left( {x + \frac{\pi }{6}} \right)\\ \Leftrightarrow \sin x.\cos \frac{\pi }{3} + \cos x.\sin \frac{\pi }{3} = \sin \left( {x + \frac{\pi }{6}} \right)\\ \Leftrightarrow \sin \left( {x + \frac{\pi }{3}} \right) = \sin \left( {x + \frac{\pi }{6}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{3} = x + \frac{\pi }{6} + k2\pi \\x + \frac{\pi }{3} = \pi - \left( {x + \frac{\pi }{6}} \right) + k2\pi \end{array} \right.\\ \Leftrightarrow x = \frac{\pi }{4} + k\pi \,\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)
Chọn D.