Giải phương trình: \(\sqrt 3 \cos x - \sin x = \sqrt 2 .\)
Giải chi tiết:
\(\sqrt 3 \cos x - sinx = \sqrt 2 \Leftrightarrow \frac{{\sqrt 3 }}{2}\cos x - \frac{1}{2}\sin x = \frac{{\sqrt 2 }}{2}\) (chia cả 2 vế cho 2).
\(\begin{array}{l} \Leftrightarrow \sin \left( {\frac{\pi }{3}} \right).\cos x - \cos \left( {\frac{\pi }{3}} \right).\sin x = \sin \left( {\frac{\pi }{4}} \right) \Leftrightarrow \sin \left( {\frac{\pi }{3} - x} \right) = \sin \frac{\pi }{4}\\ \Leftrightarrow \left[ \begin{array}{l}\frac{\pi }{3} - x = \frac{\pi }{4} + k2\pi \\\frac{\pi }{3} - x = \pi - \frac{\pi }{4} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{12}} - k2\pi \\x = - \frac{{5\pi }}{{12}} - k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)
Vậy \(S = \left\{ {\frac{\pi }{{12}} + k2\pi ; - \frac{{5\pi }}{{12}} + k2\pi } \right\}\).
Chọn A.