[LỜI GIẢI] Trong mặt phẳng tọa độ Oxy cho đường tròn ( C ) có phương trình x^2 + y^2 - 2x + 4y - 4 = 0 và điểm - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Trong mặt phẳng tọa độ Oxy cho đường tròn ( C ) có phương trình x^2 + y^2 - 2x + 4y - 4 = 0 và điểm

Trong mặt phẳng tọa độ Oxy cho đường tròn ( C ) có phương trình x^2 + y^2 - 2x + 4y - 4 = 0 và điểm

Câu hỏi

Nhận biết

Trong mặt phẳng tọa độ \(Oxy\), cho đường tròn \(\left( C \right)\) có phương trình \({x^2} + {y^2} - 2x + 4y - 4 = 0\) và điểm \(I\left( {2;1} \right)\). Phép vị tự tâm \(I\) tỉ số \(k = 2\) biến đường tròn \(\left( C \right)\) thành đường tròn \(\left( {C'} \right)\). Viết phương trình đường tròn \(\left( {C'} \right)\).


Đáp án đúng: D

Lời giải của Tự Học 365

Giải chi tiết:

Đường tròn \(\left( C \right)\) có tâm \(J\left( {1; - 2} \right)\) bán kính \(R = \sqrt {{1^2} + {{\left( { - 2} \right)}^2} - \left( { - 4} \right)} = \sqrt 9 = 3\).

Gọi \(J'\left( {x;y} \right)\) là ảnh của \(J\) của phép vị tự tâm \(I\) tỉ số \(k = 2\) ta có:

\({V_{\left( {I;2} \right)}}\left( J \right) = J' \Leftrightarrow \overrightarrow {IJ'} = 2\overrightarrow {IJ} \Leftrightarrow \left\{ \begin{array}{l}x - 2 = 2\left( {1 - 2} \right)\\y - 1 = 2\left( { - 2 - 1} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 0\\y = - 5\end{array} \right. \Rightarrow J'\left( {0; - 5} \right)\).

Gọi \(\left( {C'} \right) = {V_{\left( {I;2} \right)}}\left( C \right) \Rightarrow \left( {C'} \right)\) là đường tròn tâm \(J'\left( {0;5} \right)\) bán kính \(R' = 2R = 6\).

Vậy phương trình \(\left( {C'} \right):\,\,{x^2} + {\left( {y + 5} \right)^2} = 36\).

Ý kiến của bạn