Tìm \(m\) để hàm số \(f(x) = \left\{ \begin{array}{l}\dfrac{{{x^2} - x - 2}}{{x + 1}}\,\,\,khi\,x > - 1\\mx - 2{m^2}\,\,\,\,khi\,x \le - 1\end{array} \right.\) liên tục tại điểm \(x = - 1\).\(\)
Giải chi tiết:
TXĐ : \(D = \mathbb{R}\).
Ta có:
\(f(x) = \left\{ \begin{array}{l}\dfrac{{{x^2} - x - 2}}{{x + 1}}\,\,\,khi\,x > - 1\\mx - 2{m^2}\,\,\,\,khi\,x \le - 1\end{array} \right.\)
\(\begin{array}{l}\mathop {\lim }\limits_{x \to - {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {1^ + }} \dfrac{{{x^2} - x - 2}}{{x + 1}} = \mathop {\lim }\limits_{x \to - {1^ + }} \dfrac{{\left( {x + 1} \right)\left( {x - 2} \right)}}{{x + 1}} = \mathop {\lim }\limits_{x \to - {1^ + }} \left( {x - 2} \right) = - 3\\\mathop {\lim }\limits_{x \to - {1^ - }} f\left( x \right) = f\left( { - 1} \right) = - m - 2{m^2}\end{array}\)
Để hàm số liên tục tại \(x = - 1 \Rightarrow \mathop {\lim }\limits_{x \to - {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {1^ - }} f\left( x \right) = f\left( { - 1} \right)\)
\( \Leftrightarrow - m - 2{m^2} = - 3 \Leftrightarrow 2{m^2} + m - 3 = 0 \Leftrightarrow \left[ \begin{array}{l}m = 1\\m = \dfrac{{ - 3}}{2}\end{array} \right.\).