Tổng \(S = C_{2n}^13 + C_{2n}^3{3^3} + C_{2n}^5{3^5} + ... + C_{2n}^{2n - 1}{3^{2n - 1}}\) bằng:
Giải chi tiết:
Ta có:
\(\begin{array}{l}{\left( {3 + 1} \right)^{2n}} = \sum\limits_{k = 0}^{2n} {C_{2n}^k{{.3}^k}} = C_{2n}^0{3^0} + C_{2n}^1{3^1} + C_{2n}^2{3^2} + ... + C_{2n}^{2n - 1}{3^{2n - 1}} + C_{2n}^{2n}{3^{2n}}\\{\left( {3 - 1} \right)^{2n}} = \sum\limits_{k = 0}^{2n} {C_{2n}^k.{{\left( { - 1} \right)}^k}{3^k}} = C_{2n}^0{3^0} - C_{2n}^1{3^1} + C_{2n}^2{3^2} + ... - C_{2n}^{2n - 1}{3^{2n - 1}} + C_{2n}^{2n}{3^{2n}}\\ \Rightarrow {\left( {3 + 1} \right)^{2n}} - {\left( {3 - 1} \right)^{2n}} = 2\left( {C_{2n}^13 + C_{2n}^3{3^3} + C_{2n}^5{3^5} + ... + C_{2n}^{2n - 1}{3^{2n - 1}}} \right)\\ \Leftrightarrow {4^{2n}} - {2^{2n}} = 2S\\ \Leftrightarrow S = \dfrac{{{4^{2n}} - {2^{2n}}}}{2} = \dfrac{{{2^{4n}} - {2^{2n}}}}{2} = \dfrac{{{2^{2n}}\left( {{2^{2n}} - 1} \right)}}{2} = {2^{2n - 1}}\left( {{2^n} - 1} \right)\end{array}\)
Chọn A.