[LỜI GIẢI] Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M N lần lượt là trung điểm SB AB. Thiế - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M N lần lượt là trung điểm SB AB. Thiế

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M N lần lượt là trung điểm SB AB. Thiế

Câu hỏi

Nhận biết

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm SB, AB. Thiết diện tạo bởi mặt phẳng (OMN) và hình chóp S.ABCD là hình gì ?


Đáp án đúng: B

Lời giải của Tự Học 365

Giải chi tiết:

Trong (ABCD) gọi \(P = NO \cap CD\).

(OMN) và (SBC) có điểm M chung ; ON // BC \( \Rightarrow \) Giao tuyến của (OMN) và (ABCD) là đường thẳng qua M và song song với BC và ON.

Trong (SBC), qua M kẻ \(MQ//BC\,\,\left( {Q \in SC} \right)\).

Vậy thiết diện là MNPQ là hình thang.

Chọn B.

Ý kiến của bạn