Cho phương trình: \({\sin ^2}x + {\sin ^2}2x + {\sin ^2}3x = \frac{3}{2}\), nghiệm của pt là:
Giải chi tiết:
\(\begin{array}{l}\,\,\,\,\,\,{\sin ^2}x + {\sin ^2}2x + {\sin ^2}3x = \frac{3}{2}\\ \Leftrightarrow \frac{{1 - \cos 2x}}{2} + \frac{{1 - \cos 4x}}{2} + \frac{{1 - \cos 6x}}{2} = \frac{3}{2}\\ \Leftrightarrow \cos 2x + \cos 4x + \cos 6x = 0 \Leftrightarrow \left( {\cos 2x + \cos 6x} \right) + \cos 4x = 0\\ \Leftrightarrow 2\cos 4x\cos 2x + \cos 4x = 0 \Leftrightarrow \cos 4x\left( {\cos 2x + 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}\cos 4x = 0\\\cos 2x = - \frac{1}{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}4x = \frac{\pi }{2} + k\pi \\2x = \frac{{2\pi }}{3} + m2\pi \\2x = - \frac{{2\pi }}{3} + l2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{8} + \frac{{k\pi }}{4}\\x = \frac{\pi }{3} + m\pi \\x = - \frac{\pi }{3} + l\pi \end{array} \right.\left( {k,\;m,\;l \in \mathbb{Z}} \right)\end{array}\)