Tổng các nghiệm dương bé hơn \(10\pi \) của phương trình \({\cos ^2}x - \sqrt 3 \sin 2x = 1 + {\sin ^2}x\) là?
Giải chi tiết:
\(\begin{array}{l}\,\,\,\;\;\,\,\,{\cos ^2}x - \sqrt 3 \sin 2x = 1 + {\sin ^2}x\\ \Leftrightarrow \left( {{{\cos }^2}x - {{\sin }^2}x} \right) - \sqrt 3 \sin 2x = 1\\ \Leftrightarrow \cos 2x - \sqrt 3 \sin 2x = 1\\ \Leftrightarrow \frac{1}{2}\cos 2x - \frac{{\sqrt 3 }}{2}\sin 2x = \frac{1}{2}\\ \Leftrightarrow \cos 2x\cos \frac{\pi }{3} - \sin 2x\sin \frac{\pi }{3} = \frac{1}{2}\\ \Leftrightarrow \cos \left( {2x + \frac{\pi }{3}} \right) = \cos \frac{\pi }{3}\\ \Leftrightarrow \left[ \begin{array}{l}2x + \frac{\pi }{3} = \frac{\pi }{3} + k2\pi \\2x + \frac{\pi }{3} = - \frac{\pi }{3} + m2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}2x = k2\pi \\2x = - \frac{{2\pi }}{3} + m2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = k\pi \\x = - \frac{\pi }{3} + m\pi \end{array} \right.,\;k,\;m \in \mathbb{Z}.\end{array}\)
Ta có: \(\left[ \begin{array}{l}0 < k\pi < 10\pi \Leftrightarrow 0 < k < 10 \Leftrightarrow k \in \left\{ {1;\;2;...;\;9} \right\}\\0 < \frac{{ - \pi }}{3} + m\pi < 10\pi \Leftrightarrow 0,33 < m < 10,33 \Leftrightarrow m \in \left\{ {1;\;2;..;10} \right\}\end{array} \right.\;\)
Tổng các nghiệm là: \(\sum\limits_{k = 1}^9 {k\pi } + \sum\limits_{m = 1}^{10} {\left( { - \frac{\pi }{3} + m\pi } \right)} = \frac{{9\left( {9 + 1} \right)}}{2}\pi - \frac{{10\pi }}{3} + \frac{{10\left( {10 + 1} \right)}}{2}\pi = \frac{{290\pi }}{3}\)
Chọn A.