Với cùng số tiền để mua 51 mét vải loại I có thể mua được bao nhiêu mét vải loại II, biết giá tiền 1m vải loại II chỉ bằng 85% giá tiền 1m vải loại I.
Giải chi tiết:
Gọi giá tiền của 1m vải loại I là \(x\left( {x > 0} \right)\)
Khi đó, giá tiền của 1m vải loại II là \(85\% .x\)
Với cùng số tiền, giá tiền 1m vải và số mét vải mua được là hai đại lượng tỉ lệ nghịch nên ta có:
\(51x = 85\% x.k\) (với k là số mét vải loại II mua được)
\( \Rightarrow k = \frac{{51x}}{{85\%.x }} = 60\left( m \right)\)
Vậy với cùng số tiền để mua 51 mét vải loại I có thể mua được 60 mét vải loại II.
Chọn B
Ba vời nước cùng chảy vào một hồ có dung tích \(15,8{{m}^{3}}\) từ lúc hồ không có nước cho tới khi đầy hồ. Biết rằng thời gian để chảy được \(1{{m}^{3}}\) nước của vòi thứ nhất là \(3\) phút, vòi thứ hai là \(5\) phút và vòi thứ ba là \(8\) phút. Hỏi mỗi vời chảy được bao nhiêu nước vào hồ?
Tìm x , biết : \(x:{\left( { - 2} \right)^5} = {\left( { - 2} \right)^3}\) Kết quả x bằng :
Giá trị của x trong phép tính \({3 \over 4} - x = {1 \over 3}\) là:
Tìm các số \(x,y\) biết:
a.\(\frac{x}{5}=\frac{y}{7}\) và \(xy=140\)
b.\(\frac{x}{-3}=\frac{y}{8}\) và \({{x}^{2}}-{{y}^{2}}=\frac{-44}{5}\)
Số điểm \(10\) trong kì kiểm tra học kì I của ba bạn Tài, Thảo, Ngân tỉ lệ với \(3;1;2\). Số điểm \(10\) của cả ba bạn đạt được là \(24\). Số điểm \(10\) của bạn Ngân đạt được là
Cho \(\left| x \right| = 2\) thì :
Tìm x biết:
a) \(1{2 \over 5}x + {3 \over 7} = - {4 \over 5}\)
b) \({\left( {{x} + {1 \over 3}} \right)^3} = \left( {{{ - 1} \over 8}} \right)\)
c) \(\left| {x + {2 \over 3}} \right| + 2 = 2{1 \over 3}\)
Tìm \(x, y, z\) biết:
a) \(x + 1 = - 2\)
b) \(x:2 = 10:5\)
c) \({\rm{x:2 = y:3}}\) và\({\rm{x + y = 10}}\)
d) \(3x = 2y; 7y = 5z\) và \(x – y + z = 32\)
Kết qủa của phép tính \({3 \over 4} + {1 \over 4}:{{12} \over {20}}\) là
Tìm các số tự nhiên x, y biết: \({2^{x + 1}}{.5^y} = {20^x}\)