Tìm x
a. \(2\left| 3x-1 \right|+1=5\)
b. \(\left| 7x+1 \right|+\left| 5x+6 \right|=0\)
c. \(\left| 2x-6 \right|+\left| x+3 \right|=8\)
Giải chi tiết:
Phương pháp:+) Ta bỏ dấu giá trị tuyệt đối theo quy tắc
\(\left| x \right| = \left\{ \begin{array}{l}x\,\,\,\,\,\,khi\,\,x \ge 0\\ - x\,\,\,\,khi\,\,\,x < 0\end{array} \right.\)
sau đó tìm x.
Hướng dẫn giải chi tiết
\(\begin{array}{l}a)2\left| {3x - 1} \right| + 1 = 5\\\,\,\,\,\,2\left| {3x - 1} \right| = 4\\\,\,\,\,\,\,\,\,\left| {3x - 1} \right| = 2\\ \Rightarrow \left[ \begin{array}{l}3x - 1 = 2\\3x - 1 = - 2\end{array} \right.\\ + )\,\,3x - 1 = 2\\\,\,\,\,\,\,\,3x\,\,\,\,\,\,\,\,\,\, = 3\\\,\,\,\,\,\,\,\,x\,\,\,\,\,\,\,\,\,\,\, = 1.\\ + )\,\,3x - 1 = - 2\\\,\,\,\,\,\,\,3x\,\,\,\,\,\,\,\,\,\, = - 1\\\,\,\,\,\,\,\,\,x\,\,\,\,\,\,\,\,\,\,\, = - \frac{1}{3}.\end{array}\)
vậy x = 1 hoặc \(x = - \frac{1}{3}.\)
\(\begin{array}{l}b)\,\,\left| {7x + 1} \right| + \left| {5x + 6} \right| = 0\\\,\,\,\,\,\,\,\left| {7x + 1} \right| = - \left| {5x + 6} \right|\,\,\,\,\,(1)\end{array}\)
Ta có: \(\left| {7x - 1} \right| \ge 0\) với mọi x
\( - \left| {5x + 6} \right| \le 0\)với mọi x
Do đó (1) trở thành
\(\left\{ \begin{array}{l}\left| {7x - 1} \right| = 0\\\left| {5x + 6} \right| = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}7x - 1 = 0\\5x + 6 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{1}{7}\\x = - \frac{6}{5}\end{array} \right.\)
Do đó không tìm được x.
Vậy không có giá trị nào của x thỏa mãn.
c. \(\left| 2x-6 \right|+\left| x+3 \right|=8\) (1)
+) Trường hợp 1: \(x\ge 3\) suy ra \(\left| 2x-6 \right|\ge 0\)và \(\left| x+3 \right|\ge 0\)
Suy ra \(\left| 2x-6 \right|=2x-6\), \(\left| x+3 \right|=x+3\)
Do đó (1) trở thành \(2x-6+x+3\Leftrightarrow 3x-3=8\)
\(\begin{align}& \Leftrightarrow 3x=11 \\& \Leftrightarrow x=\frac{11}{3}\,\,\left( tm \right) \\\end{align}\)
+) Trường hợp 2: x < -3 suy ra \(\left| 2x-6 \right|<0\) và \(\left| x+3 \right|<0\)
Suy ra \(\left| 2x-6 \right|=-\left( 2x-6 \right)=6-2x;\,\,\,\left| x+3 \right|=-(x+3)=-3-x\)
Do đó (1) trở thành \(6-2x-3-x=8\Leftrightarrow -3x+3=8\)
\(\begin{align}& \Leftrightarrow -3x=5 \\& \Leftrightarrow x=-\frac{5}{2}\,\,\,\left( ktm \right) \\\end{align}\)
+) Trường hợp 3: \(-3\le x<3\) suy ra \(\left| 2x-6 \right|<0\) và \(\left| x+3 \right|\ge 0\)
Suy ra \(\left| 2x-6 \right|=-\left( 2x-6 \right)=6-2x\), \(\left| x+3 \right|=x+3\)
Do đó (1) trở thành \(6-2x+x+3=8\Leftrightarrow -x+9=8\)
\(\begin{align}& \Leftrightarrow -x=-1 \\& \Leftrightarrow x=1\,\,\,\,\left( tm \right) \\\end{align}\)
Vậy \(x=\frac{11}{3};\,\,\,x=1.\) .
Tìm các số \(x,y\) biết:
a.\(\frac{x}{5}=\frac{y}{7}\) và \(xy=140\)
b.\(\frac{x}{-3}=\frac{y}{8}\) và \({{x}^{2}}-{{y}^{2}}=\frac{-44}{5}\)
Kết qủa của phép tính \({3 \over 4} + {1 \over 4}:{{12} \over {20}}\) là
Tìm \(x, y, z\) biết:
a) \(x + 1 = - 2\)
b) \(x:2 = 10:5\)
c) \({\rm{x:2 = y:3}}\) và\({\rm{x + y = 10}}\)
d) \(3x = 2y; 7y = 5z\) và \(x – y + z = 32\)
Giá trị của x trong phép tính \({3 \over 4} - x = {1 \over 3}\) là:
Cho \(\left| x \right| = 2\) thì :
Số điểm \(10\) trong kì kiểm tra học kì I của ba bạn Tài, Thảo, Ngân tỉ lệ với \(3;1;2\). Số điểm \(10\) của cả ba bạn đạt được là \(24\). Số điểm \(10\) của bạn Ngân đạt được là
Tìm x biết:
a) \(1{2 \over 5}x + {3 \over 7} = - {4 \over 5}\)
b) \({\left( {{x} + {1 \over 3}} \right)^3} = \left( {{{ - 1} \over 8}} \right)\)
c) \(\left| {x + {2 \over 3}} \right| + 2 = 2{1 \over 3}\)
Ba vời nước cùng chảy vào một hồ có dung tích \(15,8{{m}^{3}}\) từ lúc hồ không có nước cho tới khi đầy hồ. Biết rằng thời gian để chảy được \(1{{m}^{3}}\) nước của vòi thứ nhất là \(3\) phút, vòi thứ hai là \(5\) phút và vòi thứ ba là \(8\) phút. Hỏi mỗi vời chảy được bao nhiêu nước vào hồ?
Tìm các số tự nhiên x, y biết: \({2^{x + 1}}{.5^y} = {20^x}\)
Tìm x , biết : \(x:{\left( { - 2} \right)^5} = {\left( { - 2} \right)^3}\) Kết quả x bằng :