Tìm x biết:
a) \(1{2 \over 5}x + {3 \over 7} = - {4 \over 5}\)
b) \({\left( {{x} + {1 \over 3}} \right)^3} = \left( {{{ - 1} \over 8}} \right)\)
c) \(\left| {x + {2 \over 3}} \right| + 2 = 2{1 \over 3}\)
Giải chi tiết:
\(\eqalign{& {\rm{a}})1{2 \over 5}x + {3 \over 7} = - {4 \over 5} \cr & {7 \over 5}x + {3 \over 7} = - {4 \over 5} \cr & {7 \over 5}x = - {4 \over 5} - {3 \over 7} \cr & {7 \over 5}x = {{ - 43} \over {35}} \cr & x = {{ - 43} \over {35}}:{7 \over 5} \cr & x = {{ - 43} \over {49}} \cr} \)
\(\eqalign{& {\rm{b)}} {\left( {{x} + {1 \over 3}} \right)^3} = \left( {{{ - 1} \over 8}} \right) \cr & {\left( {{x} + {1 \over 3}} \right)^3} = {\left( {{{ - 1} \over 2}} \right)^3} \cr & \Rightarrow x + {1 \over 3} = {{ - 1} \over 2} \cr & x = {{ - 1} \over 2} - {1 \over 3} \cr & x = {{ - 5} \over 6} \cr} \)
\(\eqalign{ & {\rm{c)}}\left| {x + {2 \over 3}} \right| + 2 = 2{1 \over 3} \cr & \left| {x + {2 \over 3}} \right| + 2 = {7 \over 3} \cr & \left| {x + {2 \over 3}} \right| = {7 \over 3} - 2 \cr & \left| {x + {2 \over 3}} \right| = {1 \over 3} \cr} \)
\(\eqalign{& + )x + {2 \over 3} = {1 \over 3} \cr & x = {1 \over 3} - {2 \over 3} \cr & x = {{ - 1} \over 3} \cr} \) \(\eqalign{ & + )x + {2 \over 3} = {{ - 1} \over 3} \cr & x = {{ - 1} \over 3} - {2 \over 3} \cr & x = - 1 \cr} \)