Tìm giá trị nguyên của \(x\) để biểu thức \(A\) nhận giá trị nguyên dương.
Giải chi tiết:
Ta có \(A = \frac{{x - 2}}{{x + 2}}\) với \(x \ne \pm 2.\)
Xét \(A = \frac{{x - 2}}{{x + 2}} = \frac{{x + 2 - 4}}{{x + 2}} = 1 - \frac{4}{{x + 2}}\)
Để \(A\) có giá trị nguyên thì \(\frac{4}{{x + 2}}\) có giá trị nguyên
Suy ra \(\left( {x + 2} \right) \in U\left( 4 \right) = \left\{ { - 1;1; - 2;2; - 4;4} \right\}\)
Ta có bảng sau :

Vì \(A\) có giá trị nguyên dương nên ta có \(x \in \left\{ { - 3; - 4; - 6} \right\}.\)
Chọn B.
Biểu thức \(C = {13^{n + 2}} - {13^n}.23\) (với n là số tự nhiên bất kì) luôn chia hết cho số tự nhiên nào dưới đây?
Cho tam giác ABC vuông cân tại A, AC = 6cm, điểm M thuộc cạnh BC. Gọi D, E theo thứ tự là các chân đường vuông góc kẻ từ M đến AB, AC. Chu vi của tứ giác ADME bằng:
Độ dài đường trung tuyến ứng với cạnh huyền của tam giác vuông có các cạnh góc vuông bằng 6cm, 8cm là:
Rút gọn biểu thức \(A = {{\left( {9{x^2} + 12x + 4} \right).\left( {3x - 2} \right)} \over {\left( {3x + 2} \right)}}\)
Tìm x biết:
\(a)\;{x^2} - 3x - 10 = 0\) \(b)\;7x\left( {3x - 2} \right) - 4 + 6x = 0\)
Hãy chọn câu đúng. Hình bình hành ABCD là hình chữ nhật khi:
Cho tứ giác ABCD, lấy N, M, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Tứ giác NMPQ là hình gì?
Rút gọn:
\(P = {{\left( {x + 1} \right)\left( {4{x^2} - 4x + 1} \right) + \left( {x - 1} \right)\left( {4{x^2} - 4x + 1} \right)} \over {\left( {x + 3} \right)\left( {x - 1} \right) - {x^2} - 1}}\) (với \(\left( {2x - 1} \right) \ne 0\) )
Kết quả của phép tính \(\left( {3x + 1} \right)\left( {9{x^2} - 3x + 1} \right)\) bằng:
Tính giá trị của biểu thức \(B = \left( {x + 5} \right)\left( {x - 5} \right) - {x^2} + 7\left( {x - 5} \right)\) tại x = 1: