Tìm giá trị lớn nhất của biểu thức: \(A = \left| {x - 2018} \right| - \left| {x - 2017} \right| \)
Giải chi tiết:
Áp dụng bất đẳng thức \(\left| {a - b} \right| \ge \left| a \right| - \left| b \right|\) ta có:
\(A = \left| {x - 2017} \right| - \left| {x - 2018} \right| \le \left| {(x - 2017) - (x - 2018)} \right| = \left| 1 \right| = 1\)
Dấu “=” xảy ra \(\left\{ \begin{array}{l}\left( {x - 2018} \right)\left( {x - 2017} \right) \ge 0\\x - 2018 \le x - 2017\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x \ge 2018\\x \le 2017\end{array} \right..\)
Vậy giá trị lớn nhất của \(A\) là \(1\).
Chọn B.
Tìm \(x, y, z\) biết:
a) \(x + 1 = - 2\)
b) \(x:2 = 10:5\)
c) \({\rm{x:2 = y:3}}\) và\({\rm{x + y = 10}}\)
d) \(3x = 2y; 7y = 5z\) và \(x – y + z = 32\)
Ba vời nước cùng chảy vào một hồ có dung tích \(15,8{{m}^{3}}\) từ lúc hồ không có nước cho tới khi đầy hồ. Biết rằng thời gian để chảy được \(1{{m}^{3}}\) nước của vòi thứ nhất là \(3\) phút, vòi thứ hai là \(5\) phút và vòi thứ ba là \(8\) phút. Hỏi mỗi vời chảy được bao nhiêu nước vào hồ?
Kết qủa của phép tính \({3 \over 4} + {1 \over 4}:{{12} \over {20}}\) là
Tìm x , biết : \(x:{\left( { - 2} \right)^5} = {\left( { - 2} \right)^3}\) Kết quả x bằng :
Tìm các số \(x,y\) biết:
a.\(\frac{x}{5}=\frac{y}{7}\) và \(xy=140\)
b.\(\frac{x}{-3}=\frac{y}{8}\) và \({{x}^{2}}-{{y}^{2}}=\frac{-44}{5}\)
Số điểm \(10\) trong kì kiểm tra học kì I của ba bạn Tài, Thảo, Ngân tỉ lệ với \(3;1;2\). Số điểm \(10\) của cả ba bạn đạt được là \(24\). Số điểm \(10\) của bạn Ngân đạt được là
Cho \(\left| x \right| = 2\) thì :
Tìm x biết:
a) \(1{2 \over 5}x + {3 \over 7} = - {4 \over 5}\)
b) \({\left( {{x} + {1 \over 3}} \right)^3} = \left( {{{ - 1} \over 8}} \right)\)
c) \(\left| {x + {2 \over 3}} \right| + 2 = 2{1 \over 3}\)
Tìm các số tự nhiên x, y biết: \({2^{x + 1}}{.5^y} = {20^x}\)
Giá trị của x trong phép tính \({3 \over 4} - x = {1 \over 3}\) là: