Một hình chữ nhật có chu vi 372m nếu tăng chiều dài 21m và tăng chiều rộng 10m thì diện tích tăng 2862m2. Chiều dài của hình chữ nhật là:
Giải chi tiết:
Nửa chu vi của hình chữ nhật là: \(372:2 = 186\,\,\left( m \right).\)
Gọi chiều dài hình chữ nhật là \(x\,\,\left( m \right),\,\,\,\,\left( {0 < x < 186} \right).\)
Chiều rộng hình chữ nhật là: \(186 - x\,\,\,\left( m \right).\)
Diện tích hình chữ nhật là: \(x\left( {186 - x} \right) = 186x - {x^2}\,\,\,\,\left( {{m^2}} \right).\)
Tăng chiều dài lên 21m thì chiều dài mới là: x + 21 (m)
Tăng chiều rộng lên 10m thì chiều rộng mới là: \(186 - x + 10 = 196 - x\,\,\,\left( m \right).\)
Diện tích hình chữ nhật mới là: \(\left( {x + 21} \right)\left( {196 - x} \right) = 175x - {x^2} + 4116\,\,\,\left( {{m^2}} \right).\)
Theo đề bài ta có phương trình: \(186x - {x^2} + 2862 = 175x - {x^2} + 4116\)
\(\begin{array}{l} \Leftrightarrow 11x = 1254\\ \Leftrightarrow x = 114\,\,\,\left( {tm} \right).\end{array}\)
Vậy chiều dài hình chữ nhật là 114m.
Chọn D.
Rút gọn:
\(P = {{\left( {x + 1} \right)\left( {4{x^2} - 4x + 1} \right) + \left( {x - 1} \right)\left( {4{x^2} - 4x + 1} \right)} \over {\left( {x + 3} \right)\left( {x - 1} \right) - {x^2} - 1}}\) (với \(\left( {2x - 1} \right) \ne 0\) )
Tính giá trị của biểu thức \(B = \left( {x + 5} \right)\left( {x - 5} \right) - {x^2} + 7\left( {x - 5} \right)\) tại x = 1:
Rút gọn biểu thức \(A = {{\left( {9{x^2} + 12x + 4} \right).\left( {3x - 2} \right)} \over {\left( {3x + 2} \right)}}\)
Biểu thức \(C = {13^{n + 2}} - {13^n}.23\) (với n là số tự nhiên bất kì) luôn chia hết cho số tự nhiên nào dưới đây?
Độ dài đường trung tuyến ứng với cạnh huyền của tam giác vuông có các cạnh góc vuông bằng 6cm, 8cm là:
Cho tam giác ABC vuông cân tại A, AC = 6cm, điểm M thuộc cạnh BC. Gọi D, E theo thứ tự là các chân đường vuông góc kẻ từ M đến AB, AC. Chu vi của tứ giác ADME bằng:
Cho tứ giác ABCD, lấy N, M, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Tứ giác NMPQ là hình gì?
Hãy chọn câu đúng. Hình bình hành ABCD là hình chữ nhật khi:
Kết quả của phép tính \(\left( {3x + 1} \right)\left( {9{x^2} - 3x + 1} \right)\) bằng:
Tìm x biết:
\(a)\;{x^2} - 3x - 10 = 0\) \(b)\;7x\left( {3x - 2} \right) - 4 + 6x = 0\)