Chứng minh \(BE\) là đường trung trực của đoạn thẳng \(AD\)
Giải chi tiết:

Vì \({\Delta _v}ABE = {\Delta _v}DBE\,\left( {cmt} \right) \Rightarrow \left\{ \begin{array}{l}AB = B{\rm{D}}\\A{\rm{E}} = DE\end{array} \right.\) (hai cạnh tương ứng)
Suy ra \(B,\,E\) cách đều hai đầu mút của đoạn thẳng \(AD\) hay\(BE\) là đường trung trực của \(AD\) (dấu hiệu nhận biết đường trung trực của đoạn thẳng).
Tìm x , biết : \(x:{\left( { - 2} \right)^5} = {\left( { - 2} \right)^3}\) Kết quả x bằng :
Tìm các số \(x,y\) biết:
a.\(\frac{x}{5}=\frac{y}{7}\) và \(xy=140\)
b.\(\frac{x}{-3}=\frac{y}{8}\) và \({{x}^{2}}-{{y}^{2}}=\frac{-44}{5}\)
Tìm x biết:
a) \(1{2 \over 5}x + {3 \over 7} = - {4 \over 5}\)
b) \({\left( {{x} + {1 \over 3}} \right)^3} = \left( {{{ - 1} \over 8}} \right)\)
c) \(\left| {x + {2 \over 3}} \right| + 2 = 2{1 \over 3}\)
Cho \(\left| x \right| = 2\) thì :
Tìm \(x, y, z\) biết:
a) \(x + 1 = - 2\)
b) \(x:2 = 10:5\)
c) \({\rm{x:2 = y:3}}\) và\({\rm{x + y = 10}}\)
d) \(3x = 2y; 7y = 5z\) và \(x – y + z = 32\)
Tìm các số tự nhiên x, y biết: \({2^{x + 1}}{.5^y} = {20^x}\)
Ba vời nước cùng chảy vào một hồ có dung tích \(15,8{{m}^{3}}\) từ lúc hồ không có nước cho tới khi đầy hồ. Biết rằng thời gian để chảy được \(1{{m}^{3}}\) nước của vòi thứ nhất là \(3\) phút, vòi thứ hai là \(5\) phút và vòi thứ ba là \(8\) phút. Hỏi mỗi vời chảy được bao nhiêu nước vào hồ?
Kết qủa của phép tính \({3 \over 4} + {1 \over 4}:{{12} \over {20}}\) là
Số điểm \(10\) trong kì kiểm tra học kì I của ba bạn Tài, Thảo, Ngân tỉ lệ với \(3;1;2\). Số điểm \(10\) của cả ba bạn đạt được là \(24\). Số điểm \(10\) của bạn Ngân đạt được là
Giá trị của x trong phép tính \({3 \over 4} - x = {1 \over 3}\) là: