Chứng minh: \(AB = 2AC\)
Giải chi tiết:

Xét \({\Delta _v}ABC\) có \(\angle B + \angle BAC = {90^0} \Rightarrow \angle B = {90^0} - \angle BAC = {90^0} - {60^0} = {30^0}\)
Vì \(AE\) là phân giác của \(\angle BAC\,\,\left( {gt} \right)\, \Rightarrow \angle EBA\, = \frac{1}{2}\angle BAC = \frac{1}{2}{.60^0} = {30^0}\)(tính chất tia phân giác)
\( \Rightarrow \angle EBA\,\, = \,\angle EAB\, = {30^0} \Rightarrow \Delta ABE\) cân tại \(E\) (dấu hiệu nhận biết tam giác cân)
Mà \(EK \bot AB\,\left( {gt} \right) \Rightarrow EK\) cũng là đường trung trực của \(AB\) (tính chất tam giác cân)
\( \Rightarrow AB = 2AK\) (tính chất đường trung trực)
Mà \(AK = AC\,\left( {cmt} \right)\, \Rightarrow AB = 2AC.\)
Tìm x biết:
a) \(1{2 \over 5}x + {3 \over 7} = - {4 \over 5}\)
b) \({\left( {{x} + {1 \over 3}} \right)^3} = \left( {{{ - 1} \over 8}} \right)\)
c) \(\left| {x + {2 \over 3}} \right| + 2 = 2{1 \over 3}\)
Ba vời nước cùng chảy vào một hồ có dung tích \(15,8{{m}^{3}}\) từ lúc hồ không có nước cho tới khi đầy hồ. Biết rằng thời gian để chảy được \(1{{m}^{3}}\) nước của vòi thứ nhất là \(3\) phút, vòi thứ hai là \(5\) phút và vòi thứ ba là \(8\) phút. Hỏi mỗi vời chảy được bao nhiêu nước vào hồ?
Số điểm \(10\) trong kì kiểm tra học kì I của ba bạn Tài, Thảo, Ngân tỉ lệ với \(3;1;2\). Số điểm \(10\) của cả ba bạn đạt được là \(24\). Số điểm \(10\) của bạn Ngân đạt được là
Giá trị của x trong phép tính \({3 \over 4} - x = {1 \over 3}\) là:
Tìm \(x, y, z\) biết:
a) \(x + 1 = - 2\)
b) \(x:2 = 10:5\)
c) \({\rm{x:2 = y:3}}\) và\({\rm{x + y = 10}}\)
d) \(3x = 2y; 7y = 5z\) và \(x – y + z = 32\)
Kết qủa của phép tính \({3 \over 4} + {1 \over 4}:{{12} \over {20}}\) là
Cho \(\left| x \right| = 2\) thì :
Tìm x , biết : \(x:{\left( { - 2} \right)^5} = {\left( { - 2} \right)^3}\) Kết quả x bằng :
Tìm các số tự nhiên x, y biết: \({2^{x + 1}}{.5^y} = {20^x}\)
Tìm các số \(x,y\) biết:
a.\(\frac{x}{5}=\frac{y}{7}\) và \(xy=140\)
b.\(\frac{x}{-3}=\frac{y}{8}\) và \({{x}^{2}}-{{y}^{2}}=\frac{-44}{5}\)