Cho \(\Delta ABC\) \(\left( {AB < AC} \right)\). \(AE\) là phân giác của góc \(\widehat {BAC}\) \(\left( {E \in BC} \right)\). Trên cạnh \(AC\) lấy điểm \(M\) sao cho \(AM = AB\).
a) Chứng minh \(\Delta ABE = \Delta AME\).
b) \(AE\) cắt \(BM\) tại điểm \(I\). Chứng minh \(I\) là trung điểm của \(BM\).
c) Trên tia đối của tia \(EM\) lấy điểm \(N\) sao cho \(EN = EC\). Chứng minh \(\Delta ENB = \Delta ECM\).
d) Chứng minh 3 điểm \(A,B,N\) thẳng hàng.
Giải chi tiết:

a) Chứng minh \(\Delta ABE = \Delta AME\).
Xét \(\Delta ABE\) và \(\Delta AME\) có:
\(AB = AM\left( {gt} \right)\)
\(\widehat {BAE} = \widehat {MAE}\) (\(AE\) là tia phân giác góc \(\widehat {BAC}\))
Chung \(AE\)
\( \Rightarrow \Delta ABE = \Delta AME\left( {c - g - c} \right)\) (đpcm).
b) \(AE\) cắt \(BM\) tại điểm \(I\). Chứng minh \(I\) là trung điểm của \(BM\).
Xét \(\Delta ABI\) và \(\Delta AMI\) có:
\(AB = AM\left( {gt} \right)\)
\(\widehat {BAE} = \widehat {MAE}\) (\(AE\) là tia phân giác góc \(\widehat {BAC}\))
Chung \(AI\)
\( \Rightarrow \Delta ABI = \Delta AMI\left( {c - g - c} \right)\).
\( \Rightarrow BI = MI\) (cạnh tương ứng)
Do đó \(I\) là trung điểm của \(BM\) (đpcm).
c) Trên tia đối của tia \(EM\) lấy điểm \(N\) sao cho \(EN = EC\). Chứng minh \(\Delta ENB = \Delta ECM\).
Từ câu a, \(\Delta ABE = \Delta AME\)\( \Rightarrow BE = ME\) (cạnh tương ứng)
Xét \(\Delta ENB\) và \(\Delta ECM\) có:
\(EN = EC\left( {gt} \right)\)
\(\widehat {BEN} = \widehat {MEC}\) (đối đỉnh)
\(EB = EM\left( {cmt} \right)\)
\( \Rightarrow \Delta ENB = \Delta ECM\left( {c - g - c} \right)\) (đpcm).
d) Chứng minh 3 điểm \(A,B,N\) thẳng hàng.
Từ câu a, \(\Delta ABE = \Delta AME\)\( \Rightarrow \widehat {ABE} = \widehat {AME}\) (góc tương ứng) (1)
Từ câu c, \(\Delta ENB = \Delta ECM\) \( \Rightarrow \widehat {NBE} = \widehat {CME}\) (góc tương ứng) (2)
Từ (1) và (2) suy ra: \(\widehat {ABE} + \widehat {NBE} = \widehat {AME} + \widehat {CME}\)
Mà \(\widehat {AME} + \widehat {CME} = {180^0}\) (hai góc kề bù)
Nên \(\widehat {ABE} + \widehat {NBE} = {180^0}\).
Vậy ba điểm \(A,B,N\) thẳng hàng (đpcm).
Tìm các số tự nhiên x, y biết: \({2^{x + 1}}{.5^y} = {20^x}\)
Giá trị của x trong phép tính \({3 \over 4} - x = {1 \over 3}\) là:
Ba vời nước cùng chảy vào một hồ có dung tích \(15,8{{m}^{3}}\) từ lúc hồ không có nước cho tới khi đầy hồ. Biết rằng thời gian để chảy được \(1{{m}^{3}}\) nước của vòi thứ nhất là \(3\) phút, vòi thứ hai là \(5\) phút và vòi thứ ba là \(8\) phút. Hỏi mỗi vời chảy được bao nhiêu nước vào hồ?
Tìm x biết:
a) \(1{2 \over 5}x + {3 \over 7} = - {4 \over 5}\)
b) \({\left( {{x} + {1 \over 3}} \right)^3} = \left( {{{ - 1} \over 8}} \right)\)
c) \(\left| {x + {2 \over 3}} \right| + 2 = 2{1 \over 3}\)
Tìm x , biết : \(x:{\left( { - 2} \right)^5} = {\left( { - 2} \right)^3}\) Kết quả x bằng :
Tìm \(x, y, z\) biết:
a) \(x + 1 = - 2\)
b) \(x:2 = 10:5\)
c) \({\rm{x:2 = y:3}}\) và\({\rm{x + y = 10}}\)
d) \(3x = 2y; 7y = 5z\) và \(x – y + z = 32\)
Tìm các số \(x,y\) biết:
a.\(\frac{x}{5}=\frac{y}{7}\) và \(xy=140\)
b.\(\frac{x}{-3}=\frac{y}{8}\) và \({{x}^{2}}-{{y}^{2}}=\frac{-44}{5}\)
Số điểm \(10\) trong kì kiểm tra học kì I của ba bạn Tài, Thảo, Ngân tỉ lệ với \(3;1;2\). Số điểm \(10\) của cả ba bạn đạt được là \(24\). Số điểm \(10\) của bạn Ngân đạt được là
Kết qủa của phép tính \({3 \over 4} + {1 \over 4}:{{12} \over {20}}\) là
Cho \(\left| x \right| = 2\) thì :