Cho tứ giác ABCD có \(\widehat C = {50^ \circ },\widehat D = {80^ \circ }\), AD = BC. Gọi E, F lần lượt là trung điểm của các cạnh AB và CD. Tính số đo góc EFC.
Giải chi tiết:

Gọi G, H lần lượt là trung điểm của AC, BD.
Vì E, G lần lượt là trung điểm của AB, AC nên EG là đường trung bình của tam giác ABC . Suy ra \(EG = {1 \over 2}BC;\,\,EG//BC.\)
Chứng minh tương tự ta cũng có:
\(GF = {1 \over 2}AD,FH = {1 \over 2}BC,HE = {1 \over 2}AD;\,\,GF//AD;\,\,FH//BC;\,\,HE//AD.\)
Mà AD = BC (gt), nên EG = GF = FH = HE.
Suy ra tứ giác EGFH là thoi
Suy ra EF là tia phân giác của góc \(\widehat {HFG} \Rightarrow \widehat {EFG} = {1 \over 2}\widehat {HFG}.\)
\(\widehat {GFC} = \widehat {ADC} = {80^0}\,\left( {do\,\,GF//AD} \right);\,\,\widehat {HFD} = \widehat {BCD} = {50^0}\,\,\,\left( {do\,\,\,FH//BC} \right).\)
Do đó \(\widehat {HFG} = {180^0} - \left( {\widehat {GFC} + \widehat {HFD}} \right) = {50^0} \Rightarrow \widehat {EFG} = {1 \over 2}{.50^0} = {25^0}\)
Vậy \(\widehat {EFC} = \widehat {EFG} + \widehat {GFC} = {25^0} + {80^0} = {105^0}\)
Cho tứ giác ABCD, lấy N, M, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Tứ giác NMPQ là hình gì?
Rút gọn:
\(P = {{\left( {x + 1} \right)\left( {4{x^2} - 4x + 1} \right) + \left( {x - 1} \right)\left( {4{x^2} - 4x + 1} \right)} \over {\left( {x + 3} \right)\left( {x - 1} \right) - {x^2} - 1}}\) (với \(\left( {2x - 1} \right) \ne 0\) )
Biểu thức \(C = {13^{n + 2}} - {13^n}.23\) (với n là số tự nhiên bất kì) luôn chia hết cho số tự nhiên nào dưới đây?
Độ dài đường trung tuyến ứng với cạnh huyền của tam giác vuông có các cạnh góc vuông bằng 6cm, 8cm là:
Kết quả của phép tính \(\left( {3x + 1} \right)\left( {9{x^2} - 3x + 1} \right)\) bằng:
Rút gọn biểu thức \(A = {{\left( {9{x^2} + 12x + 4} \right).\left( {3x - 2} \right)} \over {\left( {3x + 2} \right)}}\)
Cho tam giác ABC vuông cân tại A, AC = 6cm, điểm M thuộc cạnh BC. Gọi D, E theo thứ tự là các chân đường vuông góc kẻ từ M đến AB, AC. Chu vi của tứ giác ADME bằng:
Hãy chọn câu đúng. Hình bình hành ABCD là hình chữ nhật khi:
Tìm x biết:
\(a)\;{x^2} - 3x - 10 = 0\) \(b)\;7x\left( {3x - 2} \right) - 4 + 6x = 0\)
Tính giá trị của biểu thức \(B = \left( {x + 5} \right)\left( {x - 5} \right) - {x^2} + 7\left( {x - 5} \right)\) tại x = 1: