Cho hình thoi ABCD có góc D bằng \({60^o}\). Gọi E, H, G, F lần lượt là trung điểm của AB, BC, CD và DA.
a) Chứng minh tứ giác EFGH là hình chữ nhật.
b) Cho AG cắt HF tại J. Chứng minh rằng \(HF = 4FJ\).
c) Gọi I là trung điểm của FJ và P là giao điểm của EH và DB. Chứng minh IG vuông góc với IP.
d) Cho \(AB = 2cm\). Tính độ dài IP.
Giải chi tiết:

Cho hình thoi ABCD có góc D bằng \({60^o}\). Gọi E, H, G, F lần lượt là trung điểm của AB, BC, CD và DA.
a) Chứng minh tứ giác EFGH là hình chữ nhật.
Ta có ABCD là hình thoi \( \Rightarrow AC \bot BD\) (tính chất) (1)
Có E, F lần lượt là trung điểm của AB và DA (gt)
\( \Rightarrow \) EF là đường trung bình trong tam giác ABD \( \Rightarrow \)EF // BD (2)
Có F, G lần lượt là trung điểm của AD và CD (gt)
\( \Rightarrow \) FG là đường trung bình trong tam giác DAC \( \Rightarrow \)FG // AC (3)
Từ (1), (2), (3) \( \Rightarrow EF \bot FG\) (từ vuông góc đến song song)
Tương tự \( \Rightarrow FG \bot GH\,\,;\,\,GH \bot HE\,\,;\,\,HE \bot EF\)
\( \Rightarrow \) EFGH là hình chữ nhật (dhnb)
b) Cho AG cắt HF tại J. Chứng minh rằng \(HF = 4FJ\).
Ta có F, H lần lượt là trung điểm của AD và BC
\( \Rightarrow \) FH là đường trung bình của hình thoi ABCD \( \Rightarrow \)FH // AB // CD và \(FH = AB = CD\)
Xét tam giác ADG có F là trung điểm của AD, FJ // DG (FH // CD)
\( \Rightarrow \)J là trung điểm của AG \( \Rightarrow \) FJ là đường trung bình trong tam giác ADG
\( \Rightarrow FJ = \frac{1}{2}DG = \frac{1}{4}CD = \frac{1}{4}HF\) (do G là trung điểm của CD nên \(DG = \frac{1}{2}CD\))
\( \Rightarrow HF = 4FJ\) (đpcm)
c) Gọi I là trung điểm của FJ và P là giao điểm của EH và DH. Chứng minh IG vuông góc với IP.
Gọi AC cắt BD tại O \( \Rightarrow DO = \frac{1}{2}BD\,\,;\,\,OC = OA = \frac{1}{2}AC\) (tính chất)
Xét tam giác ACD có \(DA = DC\) (ABCD là hình thoi), \(\angle D = {60^o}\) (gt)
\( \Rightarrow \)\(\Delta ACD\) đều (dhnb) \( \Rightarrow AC = CD\,\)\(;\,\,DO = AG\) (tính chất)
\( \Rightarrow AG\) vừa là trung tuyến vừa là đường cao \( \Rightarrow AG \bot CD \Rightarrow AG \bot HF\) (từ vuông góc đến song song)
Gọi FG cắt BD tại M
Xét tam giác ODA có F là trung điểm của AD, FM // OA (FG // AC)
\( \Rightarrow \)M là trung điểm của OD \( \Rightarrow \) FM là đường trung bình trong tam giác ODA \( \Rightarrow FM = \frac{1}{2}OA\)
Tương tự ta cũng được \(GM = \frac{1}{2}OC\) mà \(OA = OC\) (cmt) \( \Rightarrow FM = GM\)
\( \Rightarrow \) M là trung điểm của FG
\( \Rightarrow \) IM là đường trung bình trong tam giác FJG
\( \Rightarrow \) IM // AG mà \(AG \bot HF\) (cmt) \( \Rightarrow IM \bot HF\)
Gọi PG cắt MH tại K.
Dễ thấy PHGM là hình chữ nhật (có 3 góc vuông)
\( \Rightarrow \) K là trung điểm của PG và HM ; \(HM = PG\)
Có tam giác IMH vuông tại I (\(IM \bot HF\)) có K là trung điểm của HM
\( \Rightarrow \) \(KI = \frac{1}{2}HM = \frac{1}{2}PG\)
\( \Rightarrow \) Tam giác PIG vuông tại I \( \Rightarrow \) \(IG \bot IP\) (đpcm)
d) Cho \(AB = 2cm\). Tính độ dài IP.
Ta có ABCD là hình thoi có HF là đường trung bình và \(\Delta ACD\) đều
\( \Rightarrow AB = BC = CD = DA = AC = HF = 2cm\)
\( \Rightarrow AG = \frac{{2\sqrt 3 }}{2} = \sqrt 3 cm \Rightarrow GJ = \frac{1}{2}AG = \frac{{\sqrt 3 }}{2}cm\) (J là trung điểm của AG)
\(OC = OA = \frac{1}{2}AC = 1cm\) ; \(FG = EH = \frac{1}{2}AC = 1cm\)
\(OD = AG = \sqrt 3 cm \Rightarrow EF = GH = OD = \frac{1}{2}BD = \sqrt 3 cm\)
\(IJ = \frac{1}{2}FJ = \frac{1}{8}HF = \frac{1}{4}cm\) ; \(PH = MG = \frac{1}{2}FG = \frac{1}{2}cm\)
Áp dụng định lý Pytago cho tam giác GJI vuông tại J ta được:
\(IG = \sqrt {I{J^2} + G{J^2}} = \sqrt {\frac{1}{{16}} + \frac{3}{4}} = \frac{{\sqrt {13} }}{4}\left( {cm} \right)\)
Áp dụng định lý Pytago cho tam giác HPG vuông tại H ta được:
\(PG = \sqrt {P{H^2} + G{H^2}} = \sqrt {\frac{1}{4} + 3} = \frac{{\sqrt {13} }}{2}\left( {cm} \right)\)
Áp dụng định lý Pytago cho tam giác PIG vuông tại I ta được:
\(IP = \sqrt {P{G^2} - I{G^2}} = \sqrt {\frac{{13}}{4} - \frac{{13}}{{16}}} = \frac{{\sqrt {39} }}{4}\left( {cm} \right)\)
Rút gọn:
\(P = {{\left( {x + 1} \right)\left( {4{x^2} - 4x + 1} \right) + \left( {x - 1} \right)\left( {4{x^2} - 4x + 1} \right)} \over {\left( {x + 3} \right)\left( {x - 1} \right) - {x^2} - 1}}\) (với \(\left( {2x - 1} \right) \ne 0\) )
Cho tam giác ABC vuông cân tại A, AC = 6cm, điểm M thuộc cạnh BC. Gọi D, E theo thứ tự là các chân đường vuông góc kẻ từ M đến AB, AC. Chu vi của tứ giác ADME bằng:
Kết quả của phép tính \(\left( {3x + 1} \right)\left( {9{x^2} - 3x + 1} \right)\) bằng:
Cho tứ giác ABCD, lấy N, M, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Tứ giác NMPQ là hình gì?
Rút gọn biểu thức \(A = {{\left( {9{x^2} + 12x + 4} \right).\left( {3x - 2} \right)} \over {\left( {3x + 2} \right)}}\)
Độ dài đường trung tuyến ứng với cạnh huyền của tam giác vuông có các cạnh góc vuông bằng 6cm, 8cm là:
Tính giá trị của biểu thức \(B = \left( {x + 5} \right)\left( {x - 5} \right) - {x^2} + 7\left( {x - 5} \right)\) tại x = 1:
Tìm x biết:
\(a)\;{x^2} - 3x - 10 = 0\) \(b)\;7x\left( {3x - 2} \right) - 4 + 6x = 0\)
Biểu thức \(C = {13^{n + 2}} - {13^n}.23\) (với n là số tự nhiên bất kì) luôn chia hết cho số tự nhiên nào dưới đây?
Hãy chọn câu đúng. Hình bình hành ABCD là hình chữ nhật khi: